Vertical Channel Patents (Class 438/268)
  • Patent number: 10923494
    Abstract: A method of forming a semiconductor device comprises forming sacrificial structures and support pillars on a material. Tiers are formed over the sacrificial structures and support pillars and tier pillars and tier openings are formed to expose the sacrificial structures. One or more of the tier openings comprises a greater critical dimension than the other tier openings. The sacrificial structures are removed to form a cavity. A cell film is formed over sidewalls of the tier pillars, the cavity, and the one or more tier openings. A fill material is formed in the tier openings and adjacent to the cell film and a portion removed from the other tier openings to form recesses adjacent to an uppermost tier. Substantially all of the fill material is removed from the one or more tier openings. A doped polysilicon material is formed in the recesses and the one or more tier openings. A conductive material is formed in the recesses and in the one or more tier openings.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: February 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Darwin A. Clampitt, David H. Wells, John D. Hopkins, Kevin Y. Titus
  • Patent number: 10916427
    Abstract: The present invention provides a method for forming a semiconductor device, comprising: first, a target layer is provided, an etching stop layer is formed on the target layer, afterwards, a first photoresist layer is formed on the etching stop layer, and a first etching process is then performed, to forma plurality of first trenches in the etching stop layer. Next, a second photoresist layer is formed on the etching stop layer, portion of the second photoresist layer fills in each first trench, a second etching process is then performed to form a plurality of second trenches in the etching stop layer, and using the remaining etching stop layer as a hard mask, a third etching process is performed to remove parts of the target layer.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: February 9, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Chih Chang, Yuan-Fu Ko, Chih-Sheng Chang
  • Patent number: 10910400
    Abstract: Provided herein may be a semiconductor device and a method of manufacturing the same. The method of manufacturing the semiconductor device may include forming a tunnel insulating layer in a channel hole passing through a preliminary stack structure in which interlayer insulating layers and material layers are alternately stacked. The method may include forming recess areas by removing the material layers exposed through a slit passing through the preliminary stack structure. The method may include forming a data storage layer in the recess areas through the slit. The thickness of the data storage layer may be formed regardless of a size of the channel hole.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: February 2, 2021
    Assignee: SK hynix Inc.
    Inventors: Min Woo Park, Kyo Yeon Cho
  • Patent number: 10886403
    Abstract: A self-limiting etch is used to provide a semiconductor base located between a semiconductor substrate and a semiconductor fin. The semiconductor base has an upper portion, a lower portion and a midsection. The midsection has a narrower width than the lower and upper portions. A bottom source/drain structure is grown from surfaces of the semiconductor substrate and the semiconductor base. The bottom source/drain structure has a tip region that contacts the midsection of the semiconductor base. The bottom source/drain structures on each side of the semiconductor fin are in close proximity to each other and they have increased volume. Reduced access resistance may also be achieved since the bottom source/drain structure has increased volume.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: January 5, 2021
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Alexander Reznicek, Shogo Mochizuki, Jingyun Zhang, Xin Miao
  • Patent number: 10886462
    Abstract: A method for selectively encapsulating embedded memory pillars in a semiconductor device includes coating a passivation layer on a first dielectric surface on a first outer dielectric layer present in the semiconductor device. The passivation layer adheres to the dielectric surface selective to metal. The method includes depositing an encapsulation layer on side and top surfaces of the embedded memory pillars. The passivation layer prevents deposition of the encapsulation layer on the first dielectric surface of the first outer layer dielectric. The method includes removing the first outer dielectric layer from horizontal subraces around the embedded memory pillar and the encapsulation layer from the top surface of the embedded memory pillars.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ashim Dutta, Ekmini Anuja de Silva, Jennifer Church, Luciana Meli Thompson
  • Patent number: 10872918
    Abstract: An optical isolation structure and a method for fabricating the same are provided. The optical isolation structure includes an epitaxial layer and a dielectric layer. The epitaxial layer and the dielectric layer are formed in a deep trench of a semiconductor substrate. The epitaxial layer covers a lower portion of sidewall of the trench, and the dielectric layer covers an upper portion of the sidewall of the trench. In the method for fabricating the optical isolation structure, at first, shallow trenches are formed in the semiconductor substrate. Then, the dielectric layer is formed in the shallow trenches. Thereafter, deep trenches are formed passing through the dielectric layers. Then, the epitaxial layer is formed in the deep trenches.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Han Huang, Tzu-Hsiang Chen, Shih-Pei Chou, Jiech-Fun Lu
  • Patent number: 10867906
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate. The semiconductor device structure includes a first dielectric layer over the semiconductor substrate. The semiconductor device structure includes a first conductive line embedded in the first dielectric layer. The semiconductor device structure includes a second dielectric layer over the first dielectric layer and the first conductive line. The semiconductor device structure includes a second conductive line over the second dielectric layer. The second dielectric layer is between the first conductive line and the second conductive line. The semiconductor device structure includes conductive pillars passing through the second dielectric layer to electrically connect the first conductive line to the second conductive line. The conductive pillars are spaced apart from each other.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-I Yang, Yu-Chieh Liao, Tien-Lu Lin, Tien-I Bao
  • Patent number: 10854620
    Abstract: According to one embodiment, a semiconductor memory device includes: first interconnect layers; second interconnect layers; a first memory pillar extending through the first interconnect layers; a second memory pillar extending through the second interconnect layers; a first film provided above the first interconnect layers, having a planar shape corresponding to the first interconnect layers and extending in the first direction; and a second film provided above the second interconnect layers, separate from the first film in the second direction, having a planar shape corresponding to the second interconnect layers and extending in the first direction. The first and second films have a compressive stress higher than a silicon oxide film.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 1, 2020
    Assignee: Toshiba Memory Corporation
    Inventors: Takeo Mori, Takashi Terada
  • Patent number: 10834828
    Abstract: A method for forming passive electrical devices that includes depositing a photo reactive layer over a sidewall of a via that extends through a printed circuit board; inserting a light pipe having a mask configured to provide a passive electronic device geometry within the via to an entire depth of the via; and exposing the photo reactive layer to radiation provided by the light pipe to provide a pattern having the passive electronic device geometry on the sidewall of the via.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Gerald Bartley, Darryl Becker, Matthew Doyle, Mark Jeanson
  • Patent number: 10825691
    Abstract: Methods, apparatuses, and systems related to stack a semiconductor structure are described. An example method includes stacking a semiconductor structure between electrode materials having a first silicate material on a working surface. The method further includes forming a first nitride material on the first silicate material. The method further includes forming a second silicate material on the first nitride material. The method further includes forming a second nitride material on the second silicate material. The method further includes forming a third silicate material on the second nitride. The method further includes forming a third nitride on the third silicate material. The method further includes using a wet etch process to increase a width between electrode materials. The method further includes using a dry etch process to remove a portion of materials within the semiconductor structure.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 3, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Patent number: 10818661
    Abstract: Methods for fabricating FinFETs with enhanced performance are disclosed herein. An exemplary method includes forming a first fin and a second fin having a trench defined therebetween. The first fin and the second fin each include a first semiconductor layer disposed over a second semiconductor layer. An isolation feature is formed in the trench between the first fin and the second fin. A gate structure is formed over the isolation feature, a first region of the first fin, and a first region of the second fin. The gate structure is disposed between second regions of the first fin and between second regions of the second fin. After recessing the first fin and the second fin, a third semiconductor layer is formed over the first fin and the second fin. In some embodiments, the third semiconductor layer extends over the isolation feature and merges the first fin and the second fin.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Hao Chang, Jeff J. Xu
  • Patent number: 10784278
    Abstract: A memory device and a manufacturing method are provided. The memory device includes a plurality of memory cells stacked on a substrate. The memory cell includes two conductive patterns, a channel pillar, a gate pattern and a charge storage layer. The two conductive patterns are stacked on the substrate. The channel pillar extends between the two conductive patterns along a stacking direction of the two conductive patterns, and is electrically connected with the two conductive patterns. The gate pattern is disposed between the two conductive patterns and located at a sidewall of the channel pillar. The charge storage layer is disposed between the gate pattern and the channel pillar.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: September 22, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yong-Sheng Huang, Ming-Chyi Liu
  • Patent number: 10770579
    Abstract: An n-type drift region, a p-type first body region and a p-type contact region are formed on an SiC substrate by epitaxial growth. An opening is formed within the contact region by etching such that the first body region is exposed through the opening, and a p-type second body region is formed on the first body region exposed through the opening by epitaxial growth. An n-type source region is formed by epitaxial growth, and an opening is formed within a part of the source region located on the contact region by etching such that the contact region is exposed through the opening. A trench is formed by etching such that the trench extends from the source region to the drift region through the opening of the contact region, and a gate insulating film and a gate electrode are formed within the trench.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 8, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Hidefumi Takaya, Yasushi Urakami, Yukihiko Watanabe
  • Patent number: 10763337
    Abstract: A method of forming a gate-all-around device includes forming a gate electrode layer over a substrate, patterning the gate electrode layer to form a conical frustum-shaped gate electrode, etching the conical frustum-shaped gate electrode to form a through hole extending through top and bottom surfaces of the conical frustum-shaped gate electrode, and after etching the conical frustum-shaped gate electrode, forming a nanowire in the through hole in the conical frustum-shaped gate electrode.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: September 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yung-Chih Wang, Yu-Chieh Liao, Tai-I Yang, Hsin-Ping Chen
  • Patent number: 10763105
    Abstract: A method of manufacturing a grooved-gate MOSFET device based on a two-step microwave plasma oxidation, including: etching a grooved gate, and oxidizing silicon carbide on a surface of the grooved gate to silicon dioxide by microwave plasma to form a grooved-gate oxide layer, the step of forming the grooved-gate oxide layer including: placing a silicon carbide substrate subjected to the grooved gate etching in a microwave plasma generating device; introducing a first oxygen-containing gas, heating generated oxygen plasma to a first temperature at a first heating rate, and performing low-temperature plasma oxidation at the first temperature and a first pressure; heating the oxygen plasma to a second temperature at a second heating rate, introducing a second oxygen-containing gas, and performing high-temperature plasma oxidation at the second temperature and a second pressure until a predetermined thickness of silicon dioxide is formed; stopping introduction of the oxygen-containing gas, and completing the react
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: September 1, 2020
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinyu Liu, Yidan Tang, Shengkai Wang, Yun Bai, Chengyue Yang
  • Patent number: 10741557
    Abstract: A method and structure for forming hybrid high mobility channel transistors. The method includes: providing a substrate, epitaxially growing a buffer layer over the substrate and a semiconductor layer over the buffer layer, forming a partial opening over the semiconductor layer, epitaxially growing a second semiconductor layer in the opening, forming a first plurality of fins from the first semiconductor layer and a second plurality of fins from the second semiconductor layer, where the first semiconductor layer and the second semiconductor material comprise different materials, oxidizing a portion of the second plurality of fins, and stripping the oxidized portion of the second plurality of fins, where after striping the oxidized portion of the second plurality of fins, the second plurality of fins have the same width as the first plurality of fins.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Xin Miao, Chen Zhang, Kangguo Cheng, Wenyu Xu
  • Patent number: 10727105
    Abstract: Provided are a semiconductor device and a manufacturing method therefor that can prevent the breakage of an element and in which the control of impurity amounts is less susceptible to variations in manufacturing processes. A semiconductor substrate has a front surface and includes hole portions extending from the front surface to an inside of the substrate. N-type regions are formed in the semiconductor substrate. At wall surfaces of the hole portions, p-type regions are formed to configure p-n junction with the n-type regions. Each of the p-type regions includes a low-concentration region and a high-concentration region formed at the wall surface of each hole portion. A width of the high-concentration region along the wall surface of the hole portion becomes smaller from the front surface toward a deeper position.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 28, 2020
    Assignee: RENSAS ELECTRONICS CORPORATION
    Inventors: Tsuyoshi Kachi, Yoshinori Hoshino, Senichirou Nagase
  • Patent number: 10727245
    Abstract: The present disclosure describes method and structure of a three-dimensional memory device. The memory device includes a substrate and a plurality of wordlines extending along a first direction over the substrate. The first direction is along the x direction. The plurality of wordlines form a staircase structure in a first region. A plurality of channels are formed in a second region and through the plurality of wordlines. The second region abuts the first region at a region boundary. The memory device also includes an insulating slit formed in the first and second regions and along the first direction. A first width of the insulating slit in the first region measured in a second direction is greater than a second width of the insulating slit in the second region measured in the second direction.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: July 28, 2020
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Qiang Xu, Zhiliang Xia, Ping Yan, Guangji Li, Zongliang Huo
  • Patent number: 10720519
    Abstract: A semiconductor device includes one or more trench gates extending in a first direction in plan view, one or more first-conductivity-type regions spaced away from each other in the first direction, where the first-conductivity-type regions are shallower than the trench gates, one or more second-conductivity-type regions alternating with the first-conductivity-type regions in the first direction, where the second-conductivity-type regions are shallower than the trench gates and deeper than the first-conductivity-type regions, and a second-conductivity-type trench spacer region spaced away from the one or more trench gates, where the trench spacer region has a higher concentration than the second-conductivity-type regions. Here, the trench spacer region is positioned within the first-conductivity-type regions in plan view and closer to a back surface of the semiconductor device than the first-conductivity-type regions are.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: July 21, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Tohru Shirakawa, Hidenori Takahashi
  • Patent number: 10714574
    Abstract: A shield trench power device such as a trench MOSFET or IGBT employs a gate structure with an underlying polysilicon shield region that contacts a shield region in an epitaxial or crystalline layer of the device.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 14, 2020
    Assignee: iPower Semiconductor
    Inventor: Hamza Yilmaz
  • Patent number: 10672887
    Abstract: A vertical transistor includes a first source/drain region and a second source/drain region vertically disposed relative to the first source/drain region and coupled to the first source/drain region by a fin. A gate dielectric is formed on the fin, and a gate conductor is formed on the gate dielectric in a region of the fin. A shaped spacer is configured to cover a lower portion and sides of the second source/drain region to reduce parasitic capacitance between the gate conductor and the second source/drain region.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Junli Wang, Kangguo Cheng, Theodorus E. Standaert, Veeraraghavan S. Basker
  • Patent number: 10658590
    Abstract: Techniques for forming RRAM cells with increased density are provided. In one aspect, a method of forming a RRAM device includes: providing an underlayer disposed on a substrate; patterning trenches in the underlayer; forming bottom electrodes at two different levels of the underlayer that includes first bottom electrodes at bottoms of the trenches and second bottom electrodes along a top surface of the underlayer in between the trenches; depositing an insulating layer on the first/second bottom electrodes; and forming top electrodes on the insulating layer, wherein the top electrodes include word lines, wherein the first and second bottom electrodes include bit lines that are orthogonal to the word lines. A RRAM device is also provided.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Dexin Kong, Takashi Ando
  • Patent number: 10658379
    Abstract: A method for forming a 3D memory device is disclosed. The method comprises: forming an alternating conductive/dielectric stack on a substrate; forming a slit vertically penetrating the alternating conductive/dielectric stack; forming an isolation layer on a sidewall of the slit; forming a first conductive layer covering the isolation layer; performing a plasma treatment followed by a first doping process to the first conductive layer; forming a second conductive layer covering the first conductive and filling the slit; performing a second doping process followed by a rapid thermal crystallization process to the second conductive layer; removing an upper portion of the first conductive layer and the second conductive layer to form a recess in the slit; and forming a third conductive layer in the recess.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 19, 2020
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Li Hong Xiao, Zhenyu Lu, Qian Tao, Lan Yao
  • Patent number: 10651302
    Abstract: A semiconductor device including: a semiconductor substrate; a drift region of first conductivity type that is formed in the semiconductor substrate; an accumulation region of first conductivity type that is formed above the drift region and has higher concentration than concentration of the drift region; a base region of second conductivity type that is formed above the accumulation region; and a gate trench portion that is formed extending from an upper surface of the semiconductor substrate to the drift region, passing through the base region and the accumulation region, wherein a maximum value of doping concentration of the accumulation region is greater than a maximum value of doping concentration of the base region will be provided.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: May 12, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yosuke Sakurai, Yuichi Onozawa
  • Patent number: 10651181
    Abstract: The method for producing a pillar-shaped semiconductor device includes a step of forming a tubular SiO2 layer that surrounds side surfaces of a P+ layer 38a and N+ layers 38b and 8c formed on a Si pillar 6b by epitaxial crystal growth, forming an AlO layer 51 on a periphery of the SiO2 layer, forming a tubular contact hole by etching the tubular SiO2 layer using the AlO layer 51 as a mask, and filling the contact hole with W layers 52c, 52d, and 52e to form tubular W layers 52c, 52d, and 52e (including a buffer conductor layer) that have an equal width when viewed in plan and are in contact with side surfaces of the tops of the P+ layer 38a and the N+ layers 38b and 8c.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: May 12, 2020
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Nozomu Harada, Hiroki Nakamura, Phillipe Matagne, Yoshiaki Kikuchi
  • Patent number: 10637467
    Abstract: A semiconductor device includes a first transistor, a second transistor, and a third transistor. The first transistor includes a first gate insulator, a first source region and a first drain region, a pair of lightly doped drain (LDD) regions that are each shallower than the first source region and the first drain region, and a first gate electrode. The second transistor includes a second gate insulator, a second source region and a second drain region, a pair of drift regions that encompass the second source region and the second drain region respectively, and a second gate electrode, and the third transistor comprises a third gate insulator, a third source region and a third drain region, and a pair of drift regions that encompass the third source and the third drain regions respectively, and a third gate electrode. The second gate insulator is thinner than the other gate insulators.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: April 28, 2020
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jeong Hyeon Park, Bo Seok Oh, Hee Hwan Ji
  • Patent number: 10629702
    Abstract: A vertical transport fin field effect transistor (VT FinFET), including one or more vertical fins on a surface of a substrate, an L-shaped or U-shaped spacer trough on the substrate adjacent to at least one of the one or more vertical fins, and a gate dielectric layer on the sidewalls of the at least one of the one or more vertical fins and the L-shaped or U-shaped spacer trough.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Thamarai S. Devarajan, Balasubramanian Pranatharthiharan, Sanjay C. Mehta, Muthumanickam Sankarapandian
  • Patent number: 10614867
    Abstract: A method for forming an array of very small pillar structures having a very small feature size that is smaller than the resolution limit of photolithographic process available for patterning such structures. The method involves forming an array of silicon pillar structures over a layer of material that will ultimately form the pillar structures. The array of silicon pillar structures is repeatedly oxidized to form a layer of silicon oxide at an outer surface of the silicon pillar structures and then etched to remove the outer layer of oxide, thereby reducing the features size (i.e. diameter) of the silicon pillar structure. A final oxidation process entirely oxidizes the remaining silicon pillar structures, leaving an array of small silicon oxide pillar structures that can be used as a mask for patterning underlying layers, including the underlying pillar material. The process is especially useful for forming an array of magnetic memory pillars.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: April 7, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Gian Sharma, Amitay Levi
  • Patent number: 10608092
    Abstract: This invention discloses semiconductor power device that includes a plurality of top electrical terminals disposed near a top surface of a semiconductor substrate. Each and every one of the top electrical terminals comprises a terminal contact layer formed as a silicide contact layer near the top surface of the semiconductor substrate. The trench gates of the semiconductor power device are opened from the top surface of the semiconductor substrate and each and every one of the trench gates comprises the silicide layer configured as a recessed silicide contact layer disposed on top of every on of the trench gates slightly below a top surface of the semiconductor substrate surround the trench gate.
    Type: Grant
    Filed: December 16, 2017
    Date of Patent: March 31, 2020
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, John Chen, Daniel Ng, Wenjun Li
  • Patent number: 10573656
    Abstract: The semiconductor device includes a stack, a plurality of channel structures passing through the stack, a coupling structure which is disposed below the stack for coupling the channel structures with each other and has an uneven lower surface, and a source pick-up line electrically coupled with the coupling structure.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 25, 2020
    Assignee: SK hynix Inc.
    Inventor: Nam Jae Lee
  • Patent number: 10559502
    Abstract: A method of fabricating a vertical fin field effect transistor with a merged top source/drain, including, forming a source/drain layer at the surface of a substrate, forming a plurality of vertical fins on the source/drain layer; forming protective spacers on each of the plurality of vertical fins, forming a sacrificial plug between two protective spacers, forming a filler layer on the protective spacers not in contact with the sacrificial plug, and selectively removing the sacrificial plug to form an isolation region trench between the two protective spacers.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: February 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10553686
    Abstract: There is provided a method of forming a silicon oxide film on a target surface on which a silicon oxide film and a silicon nitride film are exposed. The method comprises placing a workpiece having the target surface on which the silicon oxide film and the silicon nitride film are exposed, in a processing container under a depressurized atmosphere; forming a spacer silicon nitride film to be a sacrificial film on the target surface on which the silicon oxide film and the silicon nitride film are exposed; and substituting the spacer silicon nitride film with a substitution silicon oxide film by supplying thermal energy, oxygen radicals and hydrogen radicals onto the workpiece.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: February 4, 2020
    Assignee: TOKYO ELECTRONC LIMITED
    Inventors: Kyungseok Ko, Hiromi Shima, Eiji Kikama, Shingo Hishiya
  • Patent number: 10535677
    Abstract: A semiconductor memory device according to an embodiment includes: a semiconductor substrate; an insulating film provided on the semiconductor substrate; a conductive layer group including at least two conductive layers; a stacked body provided on the conductive layer group and including a plurality of films stacked; a memory film provided in a hole, the hole penetrating the stacked body and a part of the conductive layer group; and a slit splitting the stacked body and terminating at a position deeper than a contact portion between the conductive layer group and the memory film. The conductive layer group has a band-shaped part projecting to the stacked body side at a portion of the hole, and a groove part recessed to the semiconductor substrate side at a portion under the slit.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: January 14, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Yusuke Oshiki
  • Patent number: 10522350
    Abstract: A method of fabricating a three-dimensional semiconductor device comprises stacking first hardmask layers and second hardmask layers on a lower layer including a pattern region and a buffer region adjacent to the pattern region, the second hardmask layers and the first hardmask layers for forming a first hardmask pattern and a second hardmask pattern, patterning the second hardmask layer to form the second hardmask pattern including a plurality of first mask holes on the pattern region and at least one recess on the buffer region, the plurality of first mask holes exposing the first hardmask layer, and etching the first hardmask layer using the second hardmask pattern as an etch mask to form the first hardmask pattern including a plurality of etch mask holes on the pattern region and at least one buffer mask hole on the buffer region, the plurality of etch mask holes exposing a top surface of the lower layer, the at least one buffer mask hole having a bottom surface spaced apart from the top surface of the lo
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: December 31, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hyun Kwon, Daehyun Jang
  • Patent number: 10510846
    Abstract: A semiconductor device includes a semiconductor substrate, a transistor cell region formed in the semiconductor substrate and an inner termination region formed in the semiconductor substrate and devoid of transistor cells. The transistor cell region includes a plurality of transistor cells and a gate structure that forms a grid separating transistor sections of the transistor cells from each other, each of the transistor sections including a needle-shaped first field plate structure extending from a first surface into the semiconductor substrate. The inner termination region surrounds the transistor cell region and includes needle-shaped second field plate structures extending from the first surface into the semiconductor substrate. The first field plate structures form a first portion of a regular pattern and the second field plate structures form a second portion of the same regular pattern.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: December 17, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Oliver Blank, Franz Hirler, Michael Hutzler, David Laforet, Cedric Ouvrard, Li Juin Yip
  • Patent number: 10483395
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a first buffer layer on the first fin-shaped structure and the second fin-shaped structure; removing the first buffer layer on the first region; and performing a curing process so that a width of the first fin-shaped structure is different from a width of the second fin-shaped structure.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 19, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hao Lin, Hsin-Yu Chen, Shou-Wei Hsieh
  • Patent number: 10475922
    Abstract: A semiconductor device includes a fin-shaped semiconductor layer on a semiconductor substrate and a first insulating film around the fin-shaped semiconductor layer. A first contact is on the fin-shaped semiconductor layer, where the first contact is metal contact. A first gate insulating film is around the first contact and a fourth contact on the first contact, and a second gate insulating film is around the fourth contact.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: November 12, 2019
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 10461174
    Abstract: A method of forming a semiconductor device includes: forming a bottom source or drain (S/D) layer on a substrate; forming a bottom spacer layer on the bottom S/D layer; forming a vertical transistor channel on the bottom S/D; forming a high-k metal gate layer on sides of the vertical transistor channel and above the bottom S/D layer; forming a gate spacer on sides of the vertical transistor channel and on top of the high-k metal gate layer; covering the high-k metal gate layer, the vertical transistor channel and bottom S/D layer with an interlayer dielectric (ILD); forming with a non-self-aligned contact (SAC) etch a bottom S/D recess through the ILD to expose the bottom S/D layer, the etch removing at least portion of the gate spacer and the high-k metal gate layer; and forming a bottom S/D contact spacer on sides of the bottom S/D recess.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 29, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng Chi, Hao Tang, Ruilong Xie
  • Patent number: 10461196
    Abstract: Forming a vertical FinFET includes forming a semiconductor fin on a substrate and having a fin mask on an upper surface thereof; laterally recessing the semiconductor fin causing the fin mask; forming a conformal gate liner on the recessed semiconductor fin and the fin mask, wherein the conformal gate liner includes a first portion surrounding the fin mask and a second portion surrounding the recessed fins and being separated from the fin mask by a thickness of the conformal gate liner; forming a gate mask laterally adjacent to the second portion of the conformal gate liner; removing the first portion of the conformal gate liner; removing the gate mask to expose a remaining second portion of the conformal gate liner; and forming a gate contact to the second portion of the conformal gate liner, the remaining second portion of the conformal gate liner defines the gate length.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: October 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chanro Park, Steven Bentley, Ruilong Xie, Min Gyu Sung
  • Patent number: 10439063
    Abstract: A self-limiting etch is used to provide a semiconductor base located between a semiconductor substrate and a semiconductor fin. The semiconductor base has an upper portion, a lower portion and a midsection. The midsection has a narrower width than the lower and upper portions. A bottom source/drain structure is grown from surfaces of the semiconductor substrate and the semiconductor base. The bottom source/drain structure has a tip region that contacts the midsection of the semiconductor base. The bottom source/drain structures on each side of the semiconductor fin are in close proximity to each other and they have increased volume. Reduced access resistance may also be achieved since the bottom source/drain structure has increased volume.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Shogo Mochizuki, Jingyun Zhang, Xin Miao
  • Patent number: 10431630
    Abstract: A MOS transistor with two vertical gates is formed within a substrate zone of a semiconductor substrate doped with a first type of conductivity and separated from a remaining portion of the substrate by two first parallel trenches extending in a first direction. An isolated gate region rests on each flank of the substrate zone and on a portion of the bottom of the corresponding trench to form the two vertical gates. At least one gate connection region electrically connects the two vertical gates. A first buried region located under the substrate zone is doped with a second type of conductivity to form a first conduction electrode of the MOS transistor. A second region doped with the second type of conductivity is located at the surface of the substrate zone to form a second conduction electrode of the MOS transistor.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: October 1, 2019
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Philippe Boivin, Jean-Jacques Fagot
  • Patent number: 10424660
    Abstract: A power MOSFET includes a silicon carbide drift region having a first conductivity type, first and second well regions located in upper portions of the silicon carbide drift region that are doped with second conductivity dopants, and a channel region in a side portion of the first well region, an upper portion of the channel region having the first conductivity type, wherein a depth of the first well region is at least 1.5 microns and the depth of the first well region exceeds a distance between the first and second well regions.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 24, 2019
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Alexander V. Suvorov
  • Patent number: 10403636
    Abstract: A semiconductor memory device according to the embodiment includes a substrate, electrodes, at least one pillar structure, at least one charge storage film, and at least one insulating member. The electrodes are provided on the substrate, are separately stacked each other, and constitute a stacked body. The electrodes have a first width in a first direction along a surface of the substrate and include a portion extending in a second direction crossing the first direction along the surface. The pillar structure is provided in the stacked body and includes a semiconductor layer extending in a stacking direction of the stacked body. The charge storage film is provided between the semiconductor layer and the electrodes. The insulating member has a width in the first direction smaller than the first width, pierces the electrodes, and is provided to extend in the stacking direction.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 3, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Hideki Inokuma, Osamu Matsuura, Masanari Fujita
  • Patent number: 10388572
    Abstract: Device and methods are provided for fabricating semiconductor devices in which metal-insulator-metal (MIM) capacitor devices are integrally formed with vertical field effect transistor (FET) devices. For example, a semiconductor device includes first and second vertical FET devices, and a capacitor device, formed in different device regions of a substrate. A gate electrode of the first FET device and a first capacitor electrode of the capacitor device are patterned from a same first layer of conductive material. A gate electrode of the second FET device and a second capacitor electrode of the capacitor device are patterned from a same second layer of conductive material. A gate dielectric layer of the second FET device and a capacitor insulator layer of the capacitor device are formed from a same layer of dielectric material.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Xuefeng Liu, Heng Wu, Peng Xu
  • Patent number: 10381435
    Abstract: A deep trench which reaches a predetermined depth from one principal surface is formed in an element region of a semiconductor substrate. A TEOS oxide film and a polycrystalline silicon film are formed so as to fill the deep trench. In formation of a MOSFET and in formation of a protective insulating film on/over a surface of an element region by thermal oxidation, a silicon thermal oxide film grows, the TEOS oxide film contracts and the polycrystalline silicon film expands when oxidized and turning into a silicon oxide film, and thereby an embedded insulator is formed in the deep trench.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: August 13, 2019
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Senichirou Nagase, Tsuyoshi Kachi, Yoshinori Hoshino
  • Patent number: 10374090
    Abstract: After forming an epitaxial semiconductor layer on portions of a semiconductor located on opposite sides of a sacrificial gate structure, dopants from the epitaxial semiconductor layer are diffused into the semiconductor fin to form a dopant-containing semiconductor fin. A sacrificial gate stack is removed to provide a gate cavity that exposes a portion of the dopant-containing semiconductor fin. The exposed portion of the dopant-containing semiconductor fin is removed to provide an opening underneath the gate cavity. A channel which is undoped or less doped than remaining portions of the dopant-containing semiconductor fin is epitaxially grown at least from the sidewalls of the remaining portions of the dopant-containing semiconductor fin. Abrupt junctions are thus formed between the channel region and the remaining portions of the dopant-containing semiconductor fin.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 6, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Viorel Ontalus
  • Patent number: 10373970
    Abstract: A semiconductor device structure comprises stacked tiers each comprising at least one conductive structure and at least one insulating structure longitudinally adjacent the at least one conductive structure, at least one staircase structure having steps comprising lateral ends of the stacked tiers, and at least one opening extending through the stacked tiers and continuously across an entire length of the at least one staircase structure. The at least one conductive structure of each of the stacked tiers extends continuously from at least one of the steps of the at least one staircase structure and around the at least one opening to form at least one continuous conductive path extending completely across each of the stacked tiers. Additional semiconductor device structures, methods of faulting semiconductor device structures, and electronic systems are also described.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: August 6, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Eric N. Lee
  • Patent number: 10361127
    Abstract: A method for forming a device with multiple gate lengths includes forming a gate stack on vertical fins. A cutting mask formed on the gate stack is etched to include two or more different heights. Gate structures with two or more gate lengths are etched by employing the two or more different heights in the cutting mask as an etch mask. The cutting mask is removed. A top source/drain regions is formed on top of the vertical fins.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: July 23, 2019
    Assignee: International Business Machines Corporation
    Inventors: Gauri Karve, Fee Li Lie, Indira Seshadri, Mona Ebrish, Leigh Anne H. Clevenger, Ekmini A. De Silva, Nicole A. Saulnier
  • Patent number: 10347634
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing the mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts is formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: July 9, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Suraj Mathew
  • Patent number: 10297682
    Abstract: A semiconductor device includes one or more trench gates extending in a first direction in plan view, one or more first-conductivity-type regions spaced away from each other in the first direction, where the first-conductivity-type regions are shallower than the trench gates, one or more second-conductivity-type regions alternating with the first-conductivity-type regions in the first direction, where the second-conductivity-type regions are shallower than the trench gates and deeper than the first-conductivity-type regions, and a second-conductivity-type trench spacer region spaced away from the one or more trench gates, where the trench spacer region has a higher concentration than the second-conductivity-type regions. Here, the trench spacer region is positioned within the first-conductivity-type regions in plan view and closer to a back surface of the semiconductor device than the first-conductivity-type regions are.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: May 21, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Tohru Shirakawa, Hidenori Takahashi