Oblique Implantation Patents (Class 438/302)
  • Patent number: 7902031
    Abstract: A method for creating NAND flash memory. Source implantations are performed at a first implantation angle to areas between stacked gate structures of a NAND string. Drain implantations are performed at a second implantation angle to areas between the stacked gate structures. The implantations can dope a source line area while not doping a bit line contact area, and providing an additional implantation for the bit line contact area, or dope the bit line contact area while not doping the source line area, followed by an additional implantation for the source line area, or dope neither the source line area nor the bit line contact area, followed by additional implantations for the source line area and the bit line contact area.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: March 8, 2011
    Assignee: SanDisk Corporation
    Inventors: Gerrit Jan Hemink, Shinji Sato
  • Publication number: 20110042757
    Abstract: A method of manufacture of an integrated circuit system includes: providing a semiconductor substrate; implanting a well region, having a first conductivity, on the semiconductor substrate; patterning a gate oxide layer on the well region; implanting a source, having a second conductivity, at an angle for implanting under the gate oxide layer; selectively implanting a dopant pocket, having a third conductivity that is opposite the second conductivity, at the angle for forming the dopant pocket under the gate oxide layer; and implanting a drain, having the third conductivity, for forming a transistor channel asymmetrically positioned under the gate oxide layer.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Shyue Seng Tan, Lee Wee Teo, Ming Zhu
  • Patent number: 7888223
    Abstract: A method for fabrication a p-type channel FET includes forming a gate on a substrate. Then, a PAI ion implantation process is performed. Further, a pocket implantation process is conducted to form a pocket region. Thereafter, a first co-implantation process is performed to define a source/drain extension region depth profile. Then, a p-type source/drain extension region is formed. Afterwards, a second co-implantation process is performed to define a source/drain region depth profile. Thereafter, an in-situ doped epitaxy growth process is performed to form a doped semiconductor compound for serving as a p-type source/drain region.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 15, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Meng-Yi Wu, Tzyy-Ming Cheng
  • Publication number: 20110033998
    Abstract: An improved method of performing pocket or halo implants is disclosed. The amount of damage and defects created by the halo implant degrades the performance of the semiconductor device, by increasing leakage current, decreasing the noise margin and increasing the minimum gate voltage. The halo or packet implant is performed at cold temperature, which decreases the damage caused to the crystalline structure and improves the amorphization of the crystal. The use of cold temperature also allows the use of lighter elements for the halo implant, such as boron or phosphorus.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 10, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. Hatem, Benjamin Colombeau, Thirumal Thanigaivelan, Kyu-Ha Shim, Dennis Rodier
  • Patent number: 7883946
    Abstract: A method for forming a submicron device includes depositing a hard mask over a first region that includes a polysilicon well of a first dopant type and a gate of a second dopant type and a second region that includes a polysilicon well of a second dopant type and a gate of a first dopant type. The hard mask over the first region is removed. Angled implantation of the first dopant type is performed to form pockets under the gate of the second dopant type.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 8, 2011
    Assignee: Altera Corporation
    Inventors: Che Ta Hsu, Christopher J. Pass, Dale Ibbotson, Jeffrey T. Watt, Yanzhong Xu
  • Publication number: 20110027954
    Abstract: A method of forming a transistor device is provided wherein a gate structure is formed over a semiconductor body of a first conductivity type. The gate structure is formed comprising a protective cap thereover and defining source/drain regions laterally adjacent thereto. A first implant is performed of a second conductivity type into both the gate structure and the source/drain regions. The semiconductor body is etched to form recesses substantially aligned to the gate structure wherein the first implant is removed from the source/drain regions. Source/drain regions are implanted or grown by a selective epitaxial growth.
    Type: Application
    Filed: October 8, 2010
    Publication date: February 3, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Borna Obradovic, Shashank S. Ekbote
  • Publication number: 20110027955
    Abstract: A semiconductor device system, structure, and method of manufacture of a source/drain to retard dopant out-diffusion from a stressor are disclosed. An illustrative embodiment comprises a semiconductor substrate, device, and method to retard sidewall dopant out-diffusion in source/drain regions. A semiconductor substrate is provided with a gate structure, and a source and drain on opposing sides of the gate structure. Recessed regions are etched in a portion of the source and drain. Doped stressors are embedded into the recessed regions. A barrier dopant is incorporated into a remaining portion of the source and drain.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 3, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Yen Woon, Chun-Feng Nieh, Ching-Yi Chen, Hsun Chang, Chung-Ru Yang, Li-Te S. Lin
  • Patent number: 7868335
    Abstract: A bipolar junction transistor having an emitter, a base, and a collector includes a stack of one or more layer sets adjacent the collector. Each layer set includes a first material having a first band gap, wherein the first material is highly doped, and a second material having a second band gap narrower than the first band gap, wherein the second material is at most lightly doped.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: January 11, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Marko Sokolich, Tahir Hussain, David H. Chow
  • Patent number: 7867866
    Abstract: An SOI FET device with improved floating body is proposed. Control of the body potential is accomplished by having a body doping concentration next to the source electrode higher than the body doping concentration next to the drain electrode. The high source-side dopant concentration leads to elevated forward leakage current between the source electrode and the body, which leakage current effectively locks the body potential to the source electrode potential. Furthermore, having the source-to-body junction capacitance larger than the drain-to-body junction capacitance has additional advantages in device operation. The device has no structure fabricated for the purpose of electrically connecting the body potential to other elements of the device.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak Hung Ning
  • Publication number: 20100327374
    Abstract: An integrated circuit is disclosed having symmetric and asymmetric MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed. Specific embodiments of processes for concurrently forming symmetric and asymmetric transistors are disclosed.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: Kamel Benaissa, Greg C. Baldwin, Shaofeng Yu, Shashank S. Ekbote
  • Publication number: 20100327361
    Abstract: An integrated circuit is disclosed containing two types of MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: KAMEL BENAISSA, Greg C. Baldwin, Shaofeng Yu
  • Publication number: 20100330763
    Abstract: The present invention provides a method of forming asymmetric field-effect-transistors.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory G. Freeman, Shreesh Narasimha, Ning Su, Hasan M. Nayfeh, Nivo Rovedo, Werner A. Rausch, Jian Yu
  • Publication number: 20100317169
    Abstract: Provided is a method of manufacturing a non-volatile memory device by performing ion implantation at an angle such that active regions of memory cell transistors in a cell region and peripheral transistors in a peripheral region each have different doping concentrations.
    Type: Application
    Filed: February 18, 2010
    Publication date: December 16, 2010
    Inventors: Suk-kang Sung, Keon-soo Kim, Min-chul Kim, Se-jun Park
  • Publication number: 20100314691
    Abstract: According to one embodiment, a method for selective gate halo implantation includes forming at least one gate having a first orientation and at least one gate having a second orientation over a substrate. The method further includes performing a halo implant over the substrate. The first orientation allows a halo implanted area to be formed under the at least one gate having the first orientation and the second orientation prevents a halo implanted area from forming under the at least one gate having the second orientation. The halo implant is performed without forming a mask over the at least one gate having the first orientation or the at least one gate having the second orientation. The at least one gate having the first orientation can be used in a low voltage region of a substrate, while the at least one gate having the second orientation can be used in a high voltage region.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: Broadcom Corporation
    Inventors: Xiangdong Chen, Henry Kuo-Shun Chen, Kent Charles Oertle, Jennifer Chiao
  • Publication number: 20100289078
    Abstract: In order to further improve a driving performance without increasing an element area in a lateral MOS having a high driving performance, in which a gate width is increased per unit area by forming a plurality of trenches horizontally with respect to a gate length direction, the semiconductor device includes: a well region which is formed of a high resistance first conductivity type semiconductor at a predetermined depth from a surface of a semiconductor substrate; a plurality of trenches which extend from a surface to a midway depth in the well region; a gate insulating film which is formed on surfaces of concave and convex portions formed by the trenches; a gate electrode embedded inside the trenches; a gate electrode film which is formed on the surface of the substrate in contact with the gate electrode embedded inside the trenches in regions of the concave and convex portions, the regions excluding vicinities of both ends of the trenches; another gate electrode film which is embedded inside the trenches in
    Type: Application
    Filed: August 20, 2008
    Publication date: November 18, 2010
    Inventor: Tomomitsu Risaki
  • Publication number: 20100285650
    Abstract: A method of fabricating semiconductor devices begins by providing or fabricating a device structure that includes a semiconductor material and a plurality of gate structures formed overlying the semiconductor material. The method continues by creating light dose extension implants in the semiconductor material by bombarding the device structure with ions at a non-tilted angle relative to an exposed surface of the semiconductor material. During this step, the plurality of gate structures are used as a first implantation mask. The method continues by forming a patterned mask overlying the semiconductor material, the patterned mask being arranged to protect shared drain regions of the semiconductor material and to leave shared source regions of the semiconductor material substantially exposed.
    Type: Application
    Filed: May 8, 2009
    Publication date: November 11, 2010
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Zhonghai SHI, Jingrong ZHOU
  • Patent number: 7812388
    Abstract: A trench capacitor and method of forming a trench capacitor. The trench capacitor including: a trench in a single-crystal silicon substrate, a conformal dielectric liner on the sidewalls and the bottom of the trench; an electrically conductive polysilicon inner plate filling regions of the trench not filled by the liner; an electrically conductive doped outer plate in the substrate surrounding the sidewalls and the bottom of the trench; a doped silicon region in the substrate; a first electrically conductive metal silicide layer on a surface region of the doped silicon region exposed at the top surface of the substrate; a second electrically conductive metal silicide layer on a surface region of the inner plate exposed at the top surface of the substrate; and an insulating ring on the top surface of the substrate between the first and second metal silicide layers.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: October 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Timothy Wayne Kemerer, Robert Mark Rassel, Steven M Shank, Francis Roger White
  • Patent number: 7795098
    Abstract: An apparatus and method for manufacturing rotated field effect transistors. The method comprises providing a substrate including a first gate structure and a second gate structure, which are not parallel to each other. The method further includes performing a first ion implant substantially orthogonal to an edge of the first gate structure to form a first impurity region and performing a second ion implant at a direction different than that of the first ion implant and substantially orthogonal to an edge of the second gate structure to form a second impurity region under the edge of the second gate structure.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Myung-hee Na, Edward J. Nowak
  • Publication number: 20100227447
    Abstract: A flash memory device manufacturing process includes the steps of providing a semiconductor substrate; forming two gate structures on the substrate; performing an ion implantation process to form two first source regions in the substrate at two lateral outer sides of the two gate structures; performing a further ion implantation process to form a first drain region in the substrate between the two gate structures; performing a pocket implantation process between the gate structures to form two doped regions in the substrate at two opposite sides of the first drain region; forming two facing L-shaped spacer walls between the two gate structures above the first drain region; performing an ion implantation process to form a second drain region beneath the first drain region, both of which having a steep junction profile compared to the first source regions; and forming a barrier plug above the first drain region.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 9, 2010
    Applicant: EON SILICON SOLUTIONS INC.
    Inventors: Hung-Wei Chen, Yider Wu
  • Patent number: 7790562
    Abstract: Source implantations are performed at a first implantation angle to areas between stacked gate structures of a NAND string. Drain implantations are performed at a second implantation angle to areas between the stacked gate structures. The drain implantations create lower doped regions of a first conductivity type in the substrate on drain sides of the stacked gate structures. The source implantations create higher doped regions of the first conductivity type in the substrate on source sides of the stacked gate structures.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: September 7, 2010
    Assignee: SanDisk Corporation
    Inventors: Gerrit Jan Hemink, Shinjo Sato
  • Patent number: 7790535
    Abstract: A semiconductor device and a method of manufacturing are provided. A dielectric layer is formed over a substrate, and a first silicon-containing layer, undoped, is formed over the dielectric layer. Atomic-layer doping is used to dope the undoped silicon-containing layer. A second silicon-containing layer is formed over first silicon-containing layer. The process may be expanded to include forming a PMOS and NMOS device on the same wafer. For example, the first silicon-containing layer may be thinned in the PMOS region prior to the atomic-layer doping. In the NMOS region, the doped portion of the first silicon-containing layer is removed such that the remaining portion of the first silicon-containing layer in the NMOS is undoped. Thereafter, another atomic-layer doping process may be used to dope the first silicon-containing layer in the NMOS region to a different conductivity type. A third silicon-containing layer may be formed doped to the respective conductivity type.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: September 7, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chen-Hua Yu
  • Patent number: 7776702
    Abstract: The present invention provides a method of fabricating a semiconductor apparatus including a vertical transistor and a semiconductor apparatus fabricated thereby which protect a pillar-shaped channel region to stabilize an operating characteristic of the semiconductor apparatus. The method of fabricating the semiconductor apparatus according to the present invention comprises: forming a pillar-shaped pattern on a semiconductor substrate; depositing a conductive layer surrounding the pattern; changing a feature of some portion of the conductive layer through an ion implanting process to form an oxide film; and removing the oxide film using an etching selectivity difference.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 17, 2010
    Assignee: Hynix Semiconductor Inc
    Inventors: Suk Min Kim, Seong Hwan Kim
  • Patent number: 7772075
    Abstract: A LDMOS transistor having a channel region located between an outer boundary of an n-type region and an inner boundary of a p-body region. A width of the LDMOS channel region is less than 80% of a distance between an outer boundary of an n+-type region and the inner boundary of a p-body region. Also, a method for making a LDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants. Furthermore, a VDMOS having first and second channel regions located between an inner boundary of a first and second p-body region and an outer boundary of an n-type region of the first and second p-body regions. The width of the first and second channel regions of the VDMOS is less than 80% of a distance between the inner boundary of the first and second p-body regions and an outer boundary of an n+-type region of the first and second p-body regions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: August 10, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Binghua Hu
  • Publication number: 20100193865
    Abstract: The invention provides a DMOS transistor in which a leakage current is decreased and the source-drain breakdown voltage of the transistor in the off state is enhanced when a body layer is formed by oblique ion implantation. After a photoresist layer 18 is formed, using the photoresist layer 18 and a gate electrode 14 as a mask, first ion implantation is performed toward a first corner portion 14C1 on the inside of the gate electrode 14 in a first direction shown by an arrow A?. A first body layer 17A? is formed by this first ion implantation. The first body layer 17A? is formed so as to extend from the first corner portion 14C1 to under the gate electrode 14, and the P-type impurity concentration of the body layer 17A? in the first corner portion 14C1 is higher than that of a conventional transistor.
    Type: Application
    Filed: September 26, 2008
    Publication date: August 5, 2010
    Applicants: SANYO Electric Co., Ltd., SANYO Semiconductor Co., Ltd.
    Inventors: Yasuhiro Takeda, Seiji Otake, Shuichi Kikuchi
  • Publication number: 20100187641
    Abstract: A semiconductor structure which exhibits high device performance and improved short channel effects is provided. In particular, the present invention provides a metal oxide semiconductor field effect transistor (MOFET) that includes a low dopant concentration within an inversion layer of the structure; the inversion layer is an epitaxial semiconductor layer that is formed atop a portion of the semiconductor substrate. The inventive structure also includes a well region of a first conductivity type beneath the inversion layer, wherein the well region has a central portion and two horizontally abutting end portions. The central portion has a higher concentration of a first conductivity type dopant than the two horizontally abutting end portions. Such a well region may be referred to as a non-uniform super-steep retrograde well.
    Type: Application
    Filed: April 5, 2010
    Publication date: July 29, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Jing Wang
  • Patent number: 7759207
    Abstract: An integrated circuit system that includes: providing a gate and a spacer formed over a substrate; performing an implant that amorphizes the gate and a source/drain region defined by the spacer; removing the spacer; depositing a stress memorization layer over the integrated circuit system; and transferring a stress from the stress memorization layer to the gate and the source/drain region.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: July 20, 2010
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Elgin Kiok Boone Quek, Pradeep Ramachandramurthy Yelehanka
  • Patent number: 7749851
    Abstract: According to the present invention, there is provided a semiconductor device including a first conductive type semiconductor substrate, a gate electrode formed over the semiconductor substrate via a gate insulator, a first conductive impurity region buried in the semiconductor substrate, the first conductive impurity region being both sides of an extend plane, the extend plane being extended from side-walls of the gate electrode into the semiconductor substrate and a second conductive type source/drain region partially overlapping with the first conductive impurity region and extending from an end of the gate electrode at the semiconductor substrate to an outer region in the semiconductor substrate, wherein a first conductive impurity concentration at a prescribed depth in the overlapping portion between the first conductive impurity region and the source/drain region is lower than the first conductive impurity concentration in the first conductive impurity region except the overlapping portion corresponding
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Katsumata, Hideaki Aochi, Masaru Kidoh, Masaru Kito
  • Patent number: 7749798
    Abstract: An image sensing circuit and method is disclosed, wherein a photodiode is formed in a substrate through a series of angled implants. The photodiode is formed by a first, second and third implant, wherein at least one of the implants are angled so as to allow the resulting photodiode to extend out beneath an adjoining gate. Under an alternate embodiment, a fourth implant is added, under an increased implant angle, in the region of the second implant. The resulting photodiode structure substantially reduces or eliminates transfer gate subthreshold leakage.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 6, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Howard E. Rhodes, Richard A. Mauritzson, Inna Patrick
  • Publication number: 20100163999
    Abstract: A semiconductor element according to embodiments may include: a semiconductor substrate, a first oxide layer pattern formed over the semiconductor substrate, and a first polysilicon pattern formed over the first oxide layer pattern, wherein the substrate, the first oxide layer pattern and the first polysilicon pattern define a recess formed at both sides of the first oxide layer pattern and the first polysilicon pattern. A second polysilicon pattern may be formed over the first oxide layer pattern and the side wall of the first polysilicon pattern in the recess. A second oxide layer pattern, a second nitride layer pattern, and a third oxide layer pattern may be interposed between the first polysilicon pattern and the second polysilicon pattern, and between the second polysilicon pattern and the recess. Embodiments can be operated with lower electrical power in programming and erasing operations by forming a tip portion near a memory gate to increase an electric field at that portion.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 1, 2010
    Inventor: Tae-Woong Jeong
  • Publication number: 20100159663
    Abstract: The present invention provides a method of fabricating a semiconductor apparatus including a vertical transistor and a semiconductor apparatus fabricated thereby which protect a pillar-shaped channel region to stabilize an operating characteristic of the semiconductor apparatus. The method of fabricating the semiconductor apparatus according to the present invention comprises: forming a pillar-shaped pattern on a semiconductor substrate; depositing a conductive layer surrounding the pattern; changing a feature of some portion of the conductive layer through an ion implanting process to form an oxide film; and removing the oxide film using an etching selectivity difference.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 24, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventors: Suk Min Kim, Seong Hwan Kim
  • Publication number: 20100155795
    Abstract: A semiconductor device according to an embodiment includes: a substrate on which a source/drain region is formed; a gate oxide that includes a first oxide formed on the substrate and implanted with fluorine impurity, and a second oxide formed on the first oxide; a gate electrode that is formed on the gate oxide; and a spacer that is formed on a side of the gate electrode.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 24, 2010
    Inventor: YONG SOO CHO
  • Publication number: 20100155833
    Abstract: A method (and resultant structure) includes forming a semiconductor layer having plural stripe-like trenches, forming a gate electrode buried partially in each of the plural trenches, and introducing an impurity into the semiconductor layer by ion implantation after forming the gate electrode. The gate electrode has a buried portion formed in each of the trenches and a protruding portion situating above the buried portion and having a width larger than that of the buried portion. The introducing the impurity includes introducing an impurity into the semiconductor layer below the protruding portion by oblique ion implantation.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 24, 2010
    Applicant: NEC ELECTRONIC CORPORATION
    Inventors: Wataru Sumida, Kenya Kobayashi
  • Patent number: 7732290
    Abstract: During fabrication of single-walled carbon nanotube transistor devices, a porous template with numerous parallel pores is used to hold the single-walled carbon nanotubes. The porous template or porous structure may be anodized aluminum oxide or another material. A gate region may be provided one end or both ends of the porous structure. The gate electrode may be formed and extend into the porous structure.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: June 8, 2010
    Assignee: Etamota Corporation
    Inventors: Thomas W. Tombler, Jr., Brian Y. Lim
  • Publication number: 20100136758
    Abstract: A method of manufacturing a semiconductor device having a first memory cell array region and a second memory cell array region, the method includes forming an active region on a surface layer of a semiconductor substrate, forming a first word line extending in a first direction on the gate insulating film in the first memory cell array region, and forming a second word line extending in a second direction crossing the first direction on the gate insulating film in the second memory cell array region, wherein the ion implantation into the active region is performed from a direction that is inclined from a direction vertical to the surface of the semiconductor substrate and is oblique with respect to both the first direction and the second direction.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima
  • Publication number: 20100105175
    Abstract: An SOI FET device with improved floating body is proposed. Control of the body potential is accomplished by having a body doping concentration next to the source electrode higher than the body doping concentration next to the drain electrode. The high source-side dopant concentration leads to elevated forward leakage current between the source electrode and the body, which leakage current effectively locks the body potential to the source electrode potential. Furthermore, having the source-to-body junction capacitance larger than the drain-to-body junction capacitance has additional advantages in device operation. The device has no structure fabricated for the purpose of electrically connecting the body potential to other elements of the device.
    Type: Application
    Filed: January 4, 2010
    Publication date: April 29, 2010
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Tak Hung Ning
  • Patent number: 7704844
    Abstract: A semiconductor structure which exhibits high device performance and improved short channel effects is provided. In particular, the present invention provides a metal oxide semiconductor field effect transistor (MOFET) that includes a low dopant concentration within an inversion layer of the structure; the inversion layer is an epitaxial semiconductor layer that is formed atop a portion of the semiconductor substrate. The inventive structure also includes a well region of a first conductivity type beneath the inversion layer, wherein the well region has a central portion and two horizontally abutting end portions. The central portion has a higher concentration of a first conductivity type dopant than the two horizontally abutting end portions. Such a well region may be referred to as a non-uniform super-steep retrograde well.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Jing Wang
  • Patent number: 7700450
    Abstract: A method for forming a MOS transistor includes providing a substrate having at least a gate structure formed thereon, performing a pre-amorphization (PAI) process to form amorphized regions in the substrate, sequentially performing a co-implantation process, a first ion implantation process, and a first rapid thermal annealing (RTA) process to form lightly doped drains (LDDs), forming spacers on sidewalls of the gate structure, and forming a source/drain.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 20, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Shyh-Fann Ting, Wen-Han Hung, Li-Shian Jeng, Tzyy-Ming Cheng
  • Patent number: 7691713
    Abstract: A method of manufacturing a semiconductor device is provided that can suppress impurity concentration reduction in a doped channel region arising from formation of a gate insulating film. With a silicon oxide film (20) and a silicon nitride film (21) being formed, p-type impurity ions (23.sub.1, 23.sub.2) are implanted in a Y direction from diagonally above. As for an implant angle .alpha. of the ion implantation, an implant angle is adopted that satisfies the relationship tan?1 (W2/T)<??tan?1 (W1/T), where W1 is an interval between a first portion (211) and a fourth portion (214) and an interval between a third portion (213) and a sixth portion (216); W2 is an interval between a second portion (212) and a fifth portion (215); T is a total film thickness of the silicon oxide film (20) and the silicon nitride film (21).
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: April 6, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yoshinori Tanaka, Katsuyuki Horita, Heiji Kobayashi
  • Publication number: 20100072560
    Abstract: A method of manufacturing a nonvolatile memory device wherein first gate lines and second gate lines are formed over a semiconductor substrate. The first gate lines are spaced-from each other at a first width, the second gate lines are spaced-from each other at a second width, and the first width is wider than the second width. A first ion implantation process of forming first junction regions in the semiconductor substrate between the first gate lines and the second gate lines is performed. A second ion implantation process of forming second junction regions in the respective first junction regions between the first gate lines is then performed.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 25, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Hee Youl Lee, Jae Yoon Noh
  • Publication number: 20100068860
    Abstract: There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
    Type: Application
    Filed: November 19, 2009
    Publication date: March 18, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hongyong ZHANG, Yasuhiko TAKEMURA, Toshimitsu KONUMA, Hideto OHNUMA, Naoaki YAMAGUCHI, Hideomi SUZAWA, Hideki UOCHI
  • Patent number: 7655983
    Abstract: An SOI FET device with improved floating body is proposed. Control of the body potential is accomplished by having a body doping concentration next to the source electrode higher than the body doping concentration next to the drain electrode. The high source-side dopant concentration leads to elevated forward leakage current between the source electrode and the body, which leakage current effectively locks the body potential to the source electrode potential. Furthermore, having the source-to-body junction capacitance larger than the drain-to-body junction capacitance has additional advantages in device operation. The device has no structure fabricated for the purpose of electrically connecting the body potential to other elements of the device.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak Hung Ning
  • Publication number: 20100022062
    Abstract: The present invention provides a transistor 100 having a germanium implant region 170 located therein, a method of manufacture therefor, and an integrated circuit including the aforementioned transistor. The transistor 100, in one embodiment, includes a polysilicon gate electrode 140 located over a semiconductor substrate 110, wherein a sidewall of the polysilicon gate electrode 140 has a germanium implanted region 170 located therein. The transistor 100 further includes source/drain regions 160 located within the semiconductor substrate 110 proximate the polysilicon gate electrode 140.
    Type: Application
    Filed: October 5, 2009
    Publication date: January 28, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Kaiping Liu, Zhiqiang Wu, Majid Movahed Mansoorz
  • Patent number: 7651920
    Abstract: One or more embodiments describe a method of fabricating a silicon based metal oxide semiconductor device, comprising: implanting a first dopant into a first partial completion of the device, the first dopant comprising a first noise reducing species; and implanting a second dopant into a second partial completion of the device, the second dopant and the first dopant being opposite conductivity types.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: January 26, 2010
    Assignee: Infineon Technologies AG
    Inventor: Domagoj Siprak
  • Patent number: 7648881
    Abstract: A non-volatile memory device comprises a cell region defined at a substrate and a plurality of device isolation layers formed in the cell region to define a plurality of active regions. A charge storage insulator covers substantially the entire top surface of the cell region. A plurality of gate lines are formed on the charge storage insulator that cross over the device isolation layers. Conductive patterns are disposed between predetermined gate lines that penetrate the charge storage insulator to electrically connect with the active regions. According to the method of fabricating the device, a plurality of device isolation layers are formed in the substrate and then a charge storage insulator is formed on an entire surface of the substrate and the device isolation layers. A plurality of parallel gate lines that cross over the device isolation layers are formed on the charge storage insulator and then conductive patterns are formed between predetermined gate lines.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: January 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-Hyun Lee
  • Publication number: 20100003798
    Abstract: A semiconductor device comprises a field-effect transistor arranged in a semiconductor substrate, which transistor has a gate electrode, source/drain impurity diffusion regions, and carbon layers surrounding the source/drain impurity diffusion regions. Each of the carbon layers is provided at an associated of the source/drain impurity diffusion regions and positioned so as to be offset from the front edge of a source/drain extension in direction away from the gate electrode and to surround as profile the associated source/drain impurity diffusion region.
    Type: Application
    Filed: August 31, 2009
    Publication date: January 7, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Hiroyuki OHTA, Kenichi OKABE
  • Publication number: 20090325355
    Abstract: In extremely scaled semiconductor devices, an asymmetric transistor configuration may be established on the basis of tilted implantation processes with increased resist height and/or tilt angles during tilted implantation processes by providing an asymmetric mask arrangement for masked transistor elements. For this purpose, the implantation mask may be shifted by an appropriate amount so as to enhance the overall blocking effect for the masked transistors while reducing any shadowing effect of the implantation masks for the non-masked transistors. The shift of the implantation masks may be accomplished by performing the automatic alignment procedure on the basis of “shifted” target values or by providing asymmetrically arranged photolithography masks.
    Type: Application
    Filed: April 3, 2009
    Publication date: December 31, 2009
    Inventors: Andre Poock, Jan Hoentschel
  • Patent number: 7638401
    Abstract: A method of forming a memory device (e.g., a DRAM) including array and peripheral circuitry. A plurality of undoped polysilicon gates 58 are formed. These gates 58 are classed into three groups; namely, first conductivity type peripheral gates 58p, second conductivity type peripheral gates 58n, and array gates 58a. The array gates 58a and the first conductivity type peripheral gates 58n are masked such that the second conductivity type peripheral gates 58p remain unmasked. A plurality of second conductivity type peripheral transistors can then be formed by doping each of the second conductivity type peripheral gates 58p, while simultaneously doping a first and a second source/drain region 84 adjacent each of the second conductivity type peripheral gates 58p. The second conductivity type peripheral gates 58p are then masked such that the first conductivity type peripheral gates 58n remain unmasked.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: December 29, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Toshiyuki Nagata
  • Publication number: 20090298249
    Abstract: By providing a substantially non-damaged semiconductor region between a pre-amorphization region and the gate electrode structure, an increase of series resistance at the drain side during the re-crystallization may be reduced, thereby contributing to overall transistor performance, in particular in the linear operating mode. Thus, symmetric and asymmetric transistor architectures may be achieved with enhanced performance without unduly adding to overall process complexity.
    Type: Application
    Filed: April 14, 2009
    Publication date: December 3, 2009
    Inventors: Jan Hoentschel, Uwe Griebenow, Vassilios Papageorgiou
  • Patent number: 7625802
    Abstract: A method of forming the halo structures of a field effect transistor is disclosed. The halo structures are formed by implanting ions of a dopant material into the substrate on which the transistor is to be formed, wherein the tilt angle of the ion beam with respect to the surface of the substrate is varied according to a predefined time schedule comprising a plurality of implanting periods.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: December 1, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Manfred Horstmann, Rolf Stephan
  • Patent number: 7625774
    Abstract: Embodiments relate to a method of manufacturing a CMOS image sensor in which, when a buried photodiode is formed, a p-type impurity region may be formed simultaneously with a p-type LDD region in the photo diode region. Additionally, a p-type impurity region may be formed under side wall spacers, which may reduce leakage current of the photodiode.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang Gi Lee