Less Than 40 Percent By Weight Silica Patents (Class 501/73)
  • Patent number: 7141522
    Abstract: Ceramics comprising (i) at least one of Nb2O5 or Ta2O5 and (ii) at least two of (a) Al2O3, (b) Y2O3, or (c) at least one of ZrO2 or HfO2. Embodiments of ceramics according to the present invention can be made, formed as, or converted into optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: November 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Craig R. Schardt
  • Patent number: 7141523
    Abstract: Ceramics comprising (i) at least one of Nb2O5 or Ta2O5 and (ii) at least two of (a) Al2O3, (b) REO, or (c) at least one of ZrO2 or HfO2. Embodiments of ceramics according to the present invention can be made, formed as, or converted into optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: November 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Craig R. Schardt
  • Patent number: 7030048
    Abstract: present invention relates to a Cd-free and Pb-free glass composition comprising, based in mol %, 1–10% MO where M is selected from Ba, Sr, Ca and mixtures thereof, 5–30% MgO, 0.3–5% CuO, 0–2.5% P2O5, 0–2.5% ZrO2, 24–45% ZnO, 2–10% Al2O3, 35–50% SiO2 and 0.1–3% A2O where A is selected from the group of alkali elements and mixtures thereof wherein the glass composition is useful in thick paste dielectric materials which are compatible with AlN substrates.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: April 18, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Yong Cho, Kenneth Warren Hang
  • Patent number: 7015164
    Abstract: Disclosed is an optical glass comprising, expressed as weight percentages, greater than or equal to 18 percent and less than 30 percent of SiO2, greater than or equal to 12 percent and less than 23 percent of BaO, 22 to 37 percent TiO2, greater than or equal to 7 percent and less than 16 percent Nb2O5, 5 to 20 percent of Na2O, 0 to 6 percent of K2O, 0 to 5 percent of CaO, 0 to 5 percent of SrO, 0 to 4 percent of ZrO2, 0 to 3 percent of Ta2O5, 0 to 1 percent of Sb2O5, and greater than or equal to 0 percent and less than 0.5 percent of P2O5, and by essentially not comprising PbO, As2O3, and F. The optical glass exhibits a refractive index (nd) greater than or equal to 1.80 and an Abbé number (vd) less than or equal to 30. A method of manufacturing a glass material for press molding is disclosed.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: March 21, 2006
    Assignee: Hoya Corporation
    Inventors: Yoshiko Kasuga, Kazuo Tachiwana, Hiroaki Yanagita
  • Patent number: 7008891
    Abstract: A crystallized glass for an optical filter substrate, which has an average linear expansion coefficient ?L of from 95×10?7/° C. to 130×10?7/° C. at from ?30° C. to 70° C. and which has a crystal or the like of Na4-xKxAl4Si4O16 (1<x?4) precipitated therein. Further, a crystallized glass for an optical filter substrate, which comprises from 35 to 60% of SiO2, from 10 to 30% of Al2O3, from 1 to 15% of TiO2+ZrO2, from 4 to 20% of Na2O, from 4 to 20% of K2O, from 0.1 to 10% of CaO+SrO+Bao, from 0 to 10% of MgO, etc., and which has ?L of from 95×10?7/° C. to 130×10?7/° C. and which has a crystal or solid solution precipitated therein.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: March 7, 2006
    Assignee: Asahi Glass Company, Limited
    Inventors: Tomoyuki Kobayashi, Kei Maeda, Motoyuki Hirose
  • Patent number: 6984261
    Abstract: The invention relates to uses of glasses and glass-ceramics in dental and orthodontic applications.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: January 10, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin M. Cummings, Jacqueline C. Rolf, Anatoly Z. Rosenflanz, Richard P. Rusin, Jerome E. Swanson
  • Patent number: 6946415
    Abstract: An insulating ceramic composition includes a mixture of a ceramic powder containing MgAl2O4 and a glass powder containing 30-60% by mole of silicon oxide on the basis of SiO2 and 20-55% by mole of magnesium oxide on the basis of MgO, and the ceramic powder further includes Mg2SiO4 and TiO2. The insulating ceramic composition can be fired at 1000° C. and co-sintered with Ag and Cu. An insulating ceramic obtained by sintering the insulating ceramic composition has a high Q-factor and is therefore suitable for ceramic multilayer substrates used at high frequencies.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: September 20, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Osamu Chikagawa, Sadaaki Sakamoto, Yoichi Moriya
  • Patent number: 6939819
    Abstract: A glass ceramic composition which consists essentially of an inorganic material powder having a melting point or a glass transition point of at least 1,000° C. and a glass powder having a glass transition point of from 450 to 800° C., wherein the average of the major axes L of particles of the above inorganic material powder is from 0.5 to 15 ?m, and the average of the ratios L/W of the major axes L to the minor axes W is at most 1.4. Further, a glass ceramic composition which consists essentially of, as represented by mass percentage, from 10 to 58% of an inorganic material powder having a melting point or a glass transition point of at least 1,000° C. and from 42 to 90% of a glass powder having a glass transition point of from 450 to 800° C., wherein the glass powder consists essentially of, as represented by mol %, SiO2: 35 to 70%, B2O3: 0 to 30%, Al2O3: 3 to 18%, MgO: 0 to 40%, CaO: 0 to 19%, BaO: 0 to 35% and ZnO: 0 to 9%.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: September 6, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Hiroshi Usui, Hitoshi Onoda, Kazunari Watanabe, Yumi Okuyama, Yasuko Osaki, Katsuyoshi Nakayama
  • Patent number: 6940220
    Abstract: Glass comprises essentially 20-70% SiO2, 10-50% TiO2+Nb2O5+SnO2+Ta2O5+WO3+CeO2, 0-50% MgO+CaO+SrO+BaO+ZnO, and 0-30% B2O3+Al2O3, in molar percentage terms based on the oxides; and has a resistivity of at most 1015 ?·cm at 20° C. A method for production of glass is to produce the glass under such a condition that a redox represented by [Fe2+]/([Fe2+]+[Fe3+]) where Fe is present in the glass, is at least 0.6.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: September 6, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Tetsuya Nakashima, Kei Maeda
  • Patent number: 6936556
    Abstract: The present invention provides partially crystallizing lead-free and cadmium-free glass enamel composition that fuse at low temperatures. Glass enamel compositions according to the present invention form predominantly bismuth titanate and optionally zinc titanate crystals upon firing. Preferably, glass enamel compositions according to the invention include a glass component that includes by weight from about 11% to about 52% SiO2, from 10.2% to about 40% TiO2, from about 5% to about 75% Bi2O3, up to about 8% B2O3, up to about 14% BaO+SrO, and up to about 45% by weight ZnO, where the sum of Bi2O3 and ZnO comprises from about 30% to about 85% of the glass component by weight.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: August 30, 2005
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, George C. Korn, Jérôme Anquetil, Robert Blonski, Ivan H. Joyce
  • Patent number: 6911160
    Abstract: A high-gain phosphate glass composition, which can be used to produce ultra-short gain length lasers and optical amplifiers is described wherein the composition of the glass in addition to exhibiting high gain for lasers and amplifiers, also exhibits high thermal shock resistance, high cross section, insignificant concentration quenching, and high solubility for rare earth ions and other properties which enable the material to be fabricated into a new class of ultra-short length micro-laser, fiber laser and amplifier configurations and designs.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: June 28, 2005
    Assignee: Kigre, Inc.
    Inventors: John D. Myers, Michael J. Myers
  • Patent number: 6908879
    Abstract: A ceramic article is disclosed which contains aluminum, silicon, and titanium in a total amount of at least 99% by weight as reduced to the oxides (Al2O3+SiO2+TiO2) and assumes an acidic color in methyl red, an indicator of at least pKa+4.8. It can be used as a carried for a catalyst. This ceramic article is obtained by mixing an aluminum compound, a silicon compound, and a titanium compound and calcining the resultant mixture at a temperature in the range of 1,000°-2,000° C. A catalyst for preparing ethylene oxide is obtained by depositing silver and a reaction promoter on the ceramic carrier and ethylene oxide is obtained by oxidizing ethylene with a molecular oxygen-containing gas in the presence of the catalyst in vapor phase.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: June 21, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Masahide Shima, Hitoshi Takada
  • Patent number: 6903036
    Abstract: An infrared absorption filter consisting of 70 to 98 mol % of SiO2, 1 to 12 mol % of CuO and 1 to 18 mol % of a network modifier oxide than CuO or CdO is provided. A process of fabricating an infrared absorption filter is also provided. The process comprises introducing a divalent copper compound and a compound of a metal species acting as a network modifier oxide in the form of metal ions into a wet gel. The wet gel can be dipped in a dipping solution to precipitate the divalent copper compound and the compound of a metal species acting as the network modifier oxide in the wet gel. The wet gel can be dried and heated, thereby obtaining an infrared absorption glass. The infrared absorption glass can be cut and polished, thereby fabricating a filter.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: June 7, 2005
    Assignee: Olympus Corporation
    Inventors: Yoshinobu Akimoto, Hiroaki Kinoshita
  • Patent number: 6875715
    Abstract: Glass powder for a dielectric material has a nature that, when fired, diopside (CaMgSi2O6) and at least one of titanite (CaTi(SiO4)O) and titania (TiO2) are precipitated. Preferably, the glass powder has a composition including SiO2, CaO, MgO, and TiO2 and the total content of these components is 80 mass % or more. Preferably, the glass powder comprises, by mass percent, 35-65% SiO2, 10-30% CaO, 10-20% MgO, and 12-30% TiO2.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: April 5, 2005
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Yoshikatsu Nishikawa, Yoshio Umayahara
  • Patent number: 6873104
    Abstract: The present invention relates to a plasma display panel comprising transparent electrodes and a dielectric layer covering said transparent electrodes on at least one substrate of a pair of substrates facing each other with a discharge space therebetween, the main constituent of the transparent electrodes is included in the dielectric layer. Further, the main constituent of the transparent electrode is indium oxide and indium oxide is included in the dielectric layer. By including the main constituent of the transparent electrodes in the dielectric layer, it is believed that the drop in conductivity caused by diffusion of the dielectric substance in the transparent electrodes during high-temperature processing is prevented.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: March 29, 2005
    Assignees: Fujitsu Limited, Central Glass Company Limited
    Inventors: Noriyuki Awaji, Keiichi Betsui, Shinji Tadaki
  • Patent number: 6828265
    Abstract: An optical glass suitable for precision press molding has a refractive index (nd) of 1.88 or over and an Abbe number (&ngr;d) within a range from 22 to 28, comprises, in mass %, SiO2 15-25% B2O3 0-5% La2O3 0-5% TiO2  5-15% ZrO2  0-10% Nb2O5 30-50% WO3 0-5% CaO  0-10% BaO  0-10% Li2O  3-12% Na2O  0-10% K2O  0-10% Bi2O3  0-15% and has a glass transition point (Tg) within a range from 500° C. to 580° C. The optical glass preferably has a yield point (At) within a range from 550° C. to 640° C.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: December 7, 2004
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Susumu Uehara
  • Patent number: 6825139
    Abstract: The invention relates to a crystalline composition, a poly-crystalline product and an article of manufacture comprising an amount of SiO2, Al2O3, CaO, Fe2O3, TiO2, K2O, P2O5, Cr2O3, ZnO, MgO, Na2O, Li2O, CeO2, ZrO2 and MnO2 and methods for preparation the same.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: November 30, 2004
    Assignee: GlassCerax Ltd.
    Inventors: Alexander Raichel, Svetlana Raichel
  • Publication number: 20040235634
    Abstract: An optical glass which contains at least 20 mol % of TeO2 and has an internal transmittance of at least 80% in a thickness of 2 mm to a light having a wavelength of 405 nm and a refractive index of at least 1.85 to the same light, and which contains no alkali metal oxide or contains alkali metal oxides in a total amount of at most 15 mol %.
    Type: Application
    Filed: May 19, 2004
    Publication date: November 25, 2004
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Tomoyuki Kobayashi, Minoru Sekine, Naoki Sugimoto, Syuji Matsumoto
  • Patent number: 6818314
    Abstract: A chemical, thermal, and electrical corrosion resistant dry mix for use in fusing glass to metal motor vehicle and building industry articles. A chemical, thermal, and electrical corrosion resistant composition for fusing glass to metal motor vehicle and building industry articles. A method of glass fusing metal motor vehicle and building industry articles using a chemical, thermal, and electrical corrosion resistant dry mix. A method of glass fusing metal motor vehicle and building industry articles with a chemical, thermal, and electrical corrosion resistant composition. A method of fusing single or multiple layers of glass to metal motor vehicle and building industry articles.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: November 16, 2004
    Inventor: Gary D. Wilson
  • Publication number: 20040220040
    Abstract: An optical glass suitable for precision mold pressing has a refractive index (nd) of 1.
    Type: Application
    Filed: June 2, 2004
    Publication date: November 4, 2004
    Inventor: Susumu Uehara
  • Patent number: 6800375
    Abstract: A chemical, thermal, and electrical corrosion resistant dry mix for use in fusing glass to metal motor vehicle and building industry articles. A chemical, thermal, and electrical corrosion resistant composition for fusing glass to metal motor vehicle and building industry articles. A method of glass fusing metal motor vehicle and building industry articles using a chemical, thermal, and electrical corrosion resistant dry mix. A method of glass fusing metal motor vehicle and building industry articles with a chemical, thermal, and electrical corrosion resistant composition. A method of fusing single or multiple layers of glass to metal motor vehicle and building industry articles.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: October 5, 2004
    Inventor: Gary D. Wilson
  • Publication number: 20040152034
    Abstract: The invention relates to uses of glasses and glass-ceramics in dental and orthodontic applications.
    Type: Application
    Filed: February 5, 2003
    Publication date: August 5, 2004
    Inventors: Kevin M. Cummings, Jacqueline C. Rolf, Anatoly Z. Rosenflanz, Richard P. Rusin, Jerome E. Swanson
  • Publication number: 20040148869
    Abstract: Glasses and glass-ceramics comprising at least 75 percent by weight Al2O3, based on the total weight of the glass or glass-ceramic, respectively, and at least one metal oxide other than Al2O3. Glasses and glass-ceramics according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. Embodiments of glass-ceramic particles according to the present invention can be are particularly useful as abrasive particles.
    Type: Application
    Filed: February 5, 2003
    Publication date: August 5, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Ahmet Celikkaya, Thomas J. Anderson
  • Publication number: 20040145297
    Abstract: Glass comprises essentially 20-70% SiO2, 10-50% TiO2+Nb2O5+SnO2+Ta2O5+WO3+CeO2, 0-50% MgO+CaO+SrO+BaO+ZnO, and 0-30% B2O3+Al2O3, in molar percentage terms based on the oxides; and has a resistivity of at most 1015 &OHgr;·cm at 20° C. A method for production of glass is to produce the glass under such a condition that a redox represented by [Fe2+]/([Fe2+]+[Fe3+]) where Fe is present in the glass, is at least 0.6.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 29, 2004
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Tetsuya Nakashima, Kei Maeda
  • Patent number: 6764972
    Abstract: A compositional range for a mother glass composition for graded index lenses which has a desired refractive index and is less apt to be devitrified and to develop cracks upon ion exchange was obtained by incorporating at least a given amount of one or more ingredients which are selected from oxides of metal elements ranging from yttrium, atomic number 39, to tantalum, atomic number 73, and which are less apt to cause glass coloration into a glass based on SiO2—TiO2—Li2O—Na2O and containing no lead oxide. In particular, a compositional range in which a large angular aperture is obtained and devitrification is less apt to occur was obtained by incorporating Ta2O5 and ZrO2 in a specific proportion and in specific amounts.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: July 20, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Tetsuro Yoshii, Jun Yamaguchi
  • Publication number: 20040138042
    Abstract: The object of the present invention is to provide a flat-panel-display substrate which is high in heat resistance, of which the coefficient of thermal expansion is approximated to that of a thick film dielectric layer, which is low at high temperatures in reactivity with the lead-doped thick film dielectric layer, and which can be made to have a large area. The substrate of the present invention is obtained by sintering a body comprising glass powder and a filler made of metal and/or semi-metal oxide, and is constituted by the sintered body and whose average coefficient of linear thermal expansion is from 7 to 9.5 ppm/° C. in the temperature range of 25 to 700° C. The glass powder includes alkaline-earth oxide, 15 to 50% by weight of silicon oxide, and no greater than 2% by weight of boron oxide. Furthermore, the filler is at a concentration of 10 to 30% by volume of the total amount of the glass powder and the filler in the mould.
    Type: Application
    Filed: July 16, 2003
    Publication date: July 15, 2004
    Applicant: TDK CORPORATION
    Inventors: Takaji Shimosaka, Yukihiko Shirakawa, Shirou Ootsuki
  • Patent number: 6733891
    Abstract: Rolls include a core and a glass outer coating on the core. The glass can be electrically charged and discharged. The outer coatings have smooth finishes and controlled electrical properties. The outer coatings can also provide selected mechanical, chemical and thermal properties. The rolls can be used in various applications in which controlled electrical properties are desired. For example, the rolls can be used as charge donor rolls in electrostatographic imaging apparatus.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: May 11, 2004
    Assignee: Xerox Corporation
    Inventors: Christopher D. Blair, Timothy R. Jaskowiak
  • Publication number: 20040079258
    Abstract: The invention relates to the use of ions of weakly basic oxides as linking ions for polyacids in cements, preferably polyelectrolyte cements. Suitable ions comprise elements of the scandium series, for example, Sc3+, Y3+, La3+, Ce4+ and all subsequent tri- and tetra-valent lanthanides and the ions Mg2+, Zn2+, Ga2+, In2+. The application of said ions permits a regulation of the cement reaction without surface treatment of the glass powder.
    Type: Application
    Filed: December 8, 2003
    Publication date: April 29, 2004
    Inventors: Stefan Hoescheler, Markus Mikulla, Gabriele Rackelmann, Volker Bambach
  • Patent number: 6716779
    Abstract: A silicate based composition for optical glass used as a substrate for thin film optical interference filters having a stable transmission band center wavelength and bandwidth has a relatively high coefficient of thermal expansion, high Young's modulus and high optical transmittance in the near infrared (NIR) wavelength range of about 950 nm to about 1600 nm. The coefficient of thermal expansion of the glass composition is adjustable to particular values to result in minimal wavelength shift in filters made by depositing thin films of particular dielectric materials onto a substrate made of the glass, the composition being varied from a preferred baseline composition consisting of about 43.2% SiO2, 7% Al2O3, 12.7% CaO, 7.3% SrO, 7.8% Li2O, 13.2% Na2O, 8.0% K2O, 0.7% ZrO, and 0.1% Sb2O3, the baseline composition having a coefficient of thermal expansion of about 112×10−7/° C. over the temperature range of −30° C. to +70° C., a Young's modulus E of 88.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: April 6, 2004
    Assignees: OptoElectronics International, Inc.
    Inventor: Jacob W. Lin
  • Patent number: 6713417
    Abstract: An insulative ceramic compact is composed of a fired mixture of (A) a MgAl2O4, Mg3B2O6 and/or Mg2B205 ceramic powder, and (B) a glass powder including from about 13 to 50% by weight of silicon oxide in terms of SiO2, from 8 to 60% by weight of boron oxide in terms of B2O3, about 20% by weight or less of aluminum oxide in terms of Al2O3, and from about 10 to 55% by weight of magnesium oxide in terms of MgO. The insulative ceramic compact can be obtained by firing at low temperatures of about 1000° C. or less, can be obtained by sintering with Ag or Cu, has a low dielectric constant and a high Q value, and is suitable for use in the high-frequency range.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: March 30, 2004
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Osamu Chikagawa, Naoya Mori, Yasutaka Sugimoto
  • Patent number: 6709998
    Abstract: The invention relates to lead-free optical glasses which have refractive indices nd of between 1.65 and 1.80 and Abbe numbers &ngr;d of between 21 and 33 and possess the following composition (in % by weight, based on oxide): SiO2 27-40; B2O3 0-<0.5; Al2O3 0-6; Na2O 7-18; K2O 1-10; BaO 1-10; SrO 0-3; CaO 0.5-5; MgO 0-3; with BaO+SrO+CaO+MgO<15; TiO2 21-37; ZrO2 0-7; Nb2O5 5-17; WO3 0.1-7.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: March 23, 2004
    Assignee: Schott Glas
    Inventors: Silke Wolff, Ute Woelfel
  • Patent number: 6699807
    Abstract: A glass ceramic, for use as a resistor or a gas-tight glass ceramic solder for use in a spark plug, includes a fused seal of a starting glass fused from a starting mixture containing SiO2, Al2O3, TiO2 and CaO, the fused seal including crystalline phases in at least some areas. A method for producing such a glass ceramic provides for the starting glass to be processed in a first method step to form a starting material, which is heated for a first period of time in a second method step from a starting temperature, which is below the softening temperature of the starting glass, to a fusion temperature, which is above the softening temperature of the starting glass, and is kept at that temperature for a second period of time and finally is cooled again. A spark plug may include a terminal stud and a center electrode, which are electrically connected across a resistor that is formed in at least some areas by the glass ceramic.
    Type: Grant
    Filed: March 23, 2002
    Date of Patent: March 2, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Heinz Geier, Rudolf Pollner, Imke Koengeter, Ulrich Eisele
  • Publication number: 20040029703
    Abstract: The present invention provides partially crystallizing lead-free and cadmium-free glass enamel composition that fuse at low temperatures. Glass enamel compositions according to the present invention form predominantly bismuth titanate and optionally zinc titanate crystals upon firing. Preferably, glass enamel compositions according to the invention include a glass component that includes by weight from about 11% to about 52% SiO2, from 10.2% to about 40% TiO2, from about 5% to about 75% Bi2O3, up to about 8% B2O3, up to about 14% BaO+SrO, and up to about 45% by weight ZnO, where the sum of Bi2O3 and ZnO comprises from about 30% to about 85% of the glass component by weight.
    Type: Application
    Filed: April 7, 2003
    Publication date: February 12, 2004
    Inventors: Srinivasan Sridharan, George C. Korn, Jerome Anquetil, Robert Blonski, Ivan H. Joyce
  • Publication number: 20030228968
    Abstract: A glass ceramic composition which consists essentially of an inorganic material powder having a melting point or a glass transition point of at least 1,000° C. and a glass powder having a glass transition point of from 450 to 800° C., wherein the average of the major axes L of particles of the above inorganic material powder is from 0.5 to 15 &mgr;m, and the average of the ratios L/W of the major axes L to the minor axes W is at most 1.4. Further, a glass ceramic composition which consists essentially of, as represented by mass percentage, from 10 to 58% of an inorganic material powder having a melting point or a glass transition point of at least 1,000° C. and from 42 to 90% of a glass powder having a glass transition point of from 450 to 800° C., wherein the glass powder consists essentially of, as represented by mol %, SiO2: 35 to 70%, B2O3: 0 to 30%, Al2O3: 3 to 18%, MgO: 0 to 40%, CaO: 0 to 19%, BaO: 0 to 35% and ZnO: 0 to 9%.
    Type: Application
    Filed: June 18, 2003
    Publication date: December 11, 2003
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Hiroshi Usui, Hitoshi Onoda, Kazunari Watanabe, Yumi Okuyama, Yasuko Osaki, Katsuyoshi Nakayama
  • Patent number: 6653251
    Abstract: An optical amplifying glass having Er doped in an amount of from 0.01 to 10% as represented by mass percentage to a matrix glass comprising, by mol %, BiO2: 20 to 80, B2O3+SiO2: 5 to 75, Ga2O3+WO3+TeO2: 0.1 to 35, Al2O3≦10, GeO2≦30, TiO2≦30, and SnO2≦30, and containing no CeO2.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: November 25, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Sugimoto, Setsuro Ito
  • Patent number: 6632757
    Abstract: A glass-ceramic which is substantially and desirably totally transparent, and which contains a predominant crystal phase of forsterite. The glass-ceramic is formed from precursor glasses having the following compositions, in weight percent on an oxide basis: SiO2 30-60; Al2O3 10-25; MgO 13-30; K2O 8-20; TiO2 0-10; and GeO2 0-25. The glass-ceramic may be doped with up to 1 wt. % chromium oxide to impart optical activity thereto.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventor: George H. Beall
  • Publication number: 20030191008
    Abstract: An optical glass suitable for precision press molding has a refractive index (nd) of 1.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 9, 2003
    Inventor: Susumu Uehara
  • Patent number: 6624104
    Abstract: Low temperature melting lead-free glass and enamel compositions are provided which have low boron content and possess high durability properties. Enamel pastes containing frits of the glass compositions are particularly useful in forming colored borders in automotive glass.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: September 23, 2003
    Assignee: Ferro Glass & Color Corporation
    Inventors: George E. Sakoske, Gerhard Tünker
  • Patent number: 6617269
    Abstract: A sealing material for electric parts containing a lead-free tin silicate-phosphate glass of 50-100 volume percents and refractory fillers of the balance. The lead free tin silicate-phosphate glass consists essentially of, by molecular percent, 30-80% SnO, 5.5-20% SiO2, and 10-50% P2O5. The glass may contain at least one of glass stabilizing elements, said glass stabilizing elements including 3-25% ZnO, 0-4.9% B2O3, 0-5% Al2O3, 0-10% WO3, 0-10% MoO3, 0-10% Nb2O5, 0-10% TiO2, 0-10% ZrO2, 0-15% R2O (R is Li, Na, K, and/or Cs), 0-5% CuO, 0-5% MnO, 0-10% R′O (R′ is Mg, Ca, Sr and/or Ba), a total content of at least one of the glass stabilizing elements being up to 40%.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: September 9, 2003
    Assignee: Nippon Electric Glass Co. Ltd.
    Inventor: Toshio Yamanaka
  • Publication number: 20030162034
    Abstract: Organofluorosilicate glass films contain both organic species and inorganic fluorines, exclusive of significant amounts of fluorocarbon species. Preferred films are represented by the formula SivOwCxHyFz, where v+w+x+y+z=100%, v is from 10 to 35 atomic %, w is from 10 to 65 atomic % y is from 10 to 50 atomic %, x is from 1 to 30 atomic %, z is from 0.1 to 15 atomic %, and x/z is optionally greater than 0.25, wherein substantially none of the fluorine is bonded to the carbon. In one embodiment there is provided a CVD method that includes: providing a substrate within a vacuum chamber; introducing into the vacuum chamber gaseous reagents including a fluorine-providing gas, an oxygen-providing gas and at least one precursor gas selected from an organosilane and an organosiloxane; and applying energy to the gaseous reagents in the chamber to induce reaction of the gaseous reagents and to form the film on the substrate.
    Type: Application
    Filed: December 12, 2002
    Publication date: August 28, 2003
    Inventors: Mark Leonard O'Neill, Aaron Scott Lukas, Mark Daniel Bitner, Jean Louise Vincent, Raymond Nicholas Vrtis, Brian K. Peterson
  • Patent number: 6607999
    Abstract: A glass for a cathode ray tube which glass can be decreased in thickness and weight, a glass panel for a cathode ray tube, a cathode ray tube and methods for producing them. Strengthened glass having a high bending strength and a thick stress-strain layer, a glass for a display which is made of the strengthened glass, particularly, a glass panel for a cathode ray tube and a cathode ray tube. The glasses include (1) a glass for a cathode ray tube which is made of a chemically strengthened glass and has a Young's modulus of at least 90 GPa, (2) a glass for a cathode ray tube, which is a chemically strengthened glass from a matrix glass which contains SiO2, Al2O3, an alkali metal oxide, SrO and ZrO2 and has an Al2O3 content of more than 4% by weight but not more than 20% by weight and an SrO content of 5 to 20% by weight, and (3) a strengthened glass formed by chemical strengthening of a physically strengthened matrix glass at a temperature lower than the strain temperature of the matrix glass.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: August 19, 2003
    Assignee: Hoya Corporation
    Inventor: Yoichi Hachitani
  • Publication number: 20030145525
    Abstract: Glass-ceramics and methods of making the same. Embodiments of the invention include abrasive particles. The abrasive particles can be incorporated into a variety of abrasive articles, including bonded abrasives, coated abrasives, nonwoven abrasives, and abrasive brushes.
    Type: Application
    Filed: August 2, 2002
    Publication date: August 7, 2003
    Applicant: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6599853
    Abstract: An optical amplifier glass comprising a matrix glass containing Bi2O3 and at least one of Al2O3 and Ga2O3, and Er doped to the matrix glass, wherein from 0.01 to 10% by mass percentage of Er is doped to the matrix glass which has a total content of Al2O3 and Ga2O3 of at least 0.1 mol %, a content of Bi2O3 of at least 20 mol %, a refractive index of at least 1.8 at a wavelength of 1.55 &mgr;m, a glass transition temperature of at least 360° C. and an optical basicity of at most 0.49.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: July 29, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Sugimoto, Setsuro Ito, Setsuhisa Tanabe
  • Patent number: 6599852
    Abstract: An optical amplifying glass comprising a matrix glass and from 0.001 to 10% by mass percentage of Tm doped to the matrix glass, wherein the matrix glass contains from 15 to 80 mol % of Bi2O3 and further contains at least one component selected from the group consisting of SiO2, B2O3 and GeO2.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: July 29, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuki Kondo, Setsuro Ito, Naoki Sugimoto, Tatsuo Nagashima, Setsuhisa Tanabe
  • Publication number: 20030126803
    Abstract: Al2O3-rare earth oxide-ZrO2/HfO2 ceramics (including glasses, crystalline ceramics, and glass-ceramics) and methods of making the same. Ceramics according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. The particles and fibers are useful, for example, as thermal insulation, filler, or reinforcing material in composites (e.g., ceramic, metal, or polymeric matrix composites). The thin coatings can be useful, for example, as protective coatings in applications involving wear, as well as for thermal management. Certain ceramic particles according to the present invention can be are particularly useful as abrasive particles.
    Type: Application
    Filed: August 2, 2002
    Publication date: July 10, 2003
    Applicant: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20030126802
    Abstract: Amorphous materials, glass-ceramics and methods of making the same. Embodiments of the invention include abrasive particles. The abrasive particles can be incorporated into a variety of abrasive articles, including bonded abrasives, coated abrasives, nonwoven abrasives, and abrasive brushes.
    Type: Application
    Filed: August 2, 2002
    Publication date: July 10, 2003
    Applicant: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20030126804
    Abstract: Alumina-zirconia materials and methods of making the same. Embodiments of the invention include abrasive particles. The abrasive particles can be incorporated into a variety of abrasive articles, including bonded abrasives, coated abrasives, nonwoven abrasives, and abrasive brushes.
    Type: Application
    Filed: August 2, 2002
    Publication date: July 10, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Ahmet Celikkaya, Thomas J. Anderson
  • Publication number: 20030110708
    Abstract: Al2O3—Y2O3—ZrO2/HfO2 ceramics (including glasses, crystalline ceramics, and glass-ceramics) and methods of making the same. Ceramics according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. The particles and fibers are useful, for example, as thermal insulation, filler, or reinforcing material in composites (e.g., ceramic, metal, or polymeric matrix composites). The thin coatings can be useful, for example, as protective coatings in applications involving wear, as well as for thermal management. Certain ceramic particles according to the present invention can be are particularly useful as abrasive particles.
    Type: Application
    Filed: August 2, 2002
    Publication date: June 19, 2003
    Applicant: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20030110709
    Abstract: Methods of making amorphous material and ceramic materials. Embodiments of the invention can be used to make abrasive particles. The abrasive particles can be incorporated into a variety of abrasive articles, including bonded abrasives, coated abrasives, nonwoven abrasives, and abrasive brushes.
    Type: Application
    Filed: August 2, 2002
    Publication date: June 19, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Ahmet Celikkaya, Thomas J. Anderson
  • Publication number: 20030096694
    Abstract: Disclosed is an optical glass comprising, expressed as weight percentages, greater than or equal to 18 percent and less than 30 percent of SiO2, greater than or equal to 12 percent and less than 23 percent of BaO, 22 to 37 percent TiO2, greater than or equal to 7 percent and less than 16 percent Nb2O5, 5 to 20 percent of Na2O, 0 to 6 percent of K2O, 0 to 5 percent of CaO, 0 to 5 percent of SrO, 0 to 4 percent of ZrO2, 0 to 3 percent of Ta2O5, 0 to 1 percent of Sb2O5, and greater than or equal to 0 percent and less than 0.5 percent of P2O5, and by essentially not comprising PbO, As2O3, and F. The optical glass exhibits a refractive index (nd) greater than or equal to 1.80 and an Abbé number (vd) less than or equal to 30. A method of manufacturing a glass material for press molding is disclosed.
    Type: Application
    Filed: October 15, 2002
    Publication date: May 22, 2003
    Applicant: HOYA CORPORATION
    Inventors: Yoshiko Kasuga, Kazuo Tachiwana, Hiroaki Yanagita