Component A Metal Is Group Ia, Iia Or Iiia And Component B Metal Is Group Ivb To Viib Or Viii (i.e., Alkali Metal, Alkaline Earth Metal, Be, Mg, Al, Ga, In Or Tl And Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Iron Group Or Platinum Group) (e.g., Ziegler Catalyst, Etc.) Patents (Class 502/103)
  • Patent number: 9376519
    Abstract: The present specification describes a transition metal compound having a novel structure, a catalytic composition including the same, and a method for preparing a polymer using the same.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: June 28, 2016
    Assignee: LG CHEM, LTD.
    Inventors: Yoonhee Cho, Youngshil Do, Yun Jin Lee, A Rim Kim, Choong Hoon Lee, Seung Hwan Jung
  • Patent number: 9376518
    Abstract: This invention relates to racemic bridged bis(indenyl)metallocene transition metal compounds, rac-directing metallation reagents and a process to produce the racemic bridged bis(indenyl)metallocene transition metal compounds using the rac-directing metallation regents.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: June 28, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Glen E. Alliger
  • Patent number: 9375709
    Abstract: This invention relates to a catalyst system for selective oligomerization of ethylene, which includes (i) a chromium compound; (ii) a ligand having a P—C—C—P backbone structure; and (iii) an activator, thus preparing 1-hexene and/or 1-octene with high activity and selectivity.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 28, 2016
    Assignees: SK INNOVATION CO., LTD., SK GLOBAL CHEMICAL CO., LTD.
    Inventors: Tack Kyu Han, Min Seon Jung, Dong Chul Shin, Ho Seong Lee, Sung Seok Chae, Jong Sok Han
  • Patent number: 9353202
    Abstract: A catalyst composition may include a precontacted mixture of an olefin polymerization catalyst and an agent including an ammonium salt. The catalyst activity of the catalyst composition in the presence of water may be greater than if no ammonium salt were present in the catalyst composition. The ammonium salt may include a tetraalkylammonium salt, and the olefin polymerization catalyst may include a metallocene compound.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: May 31, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Randall S. Muninger, Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Graham R. Lief
  • Patent number: 9352987
    Abstract: The present invention provides a supported reactant for in situ remediation of soil and/or groundwater contaminated with a halogenated hydrocarbon consisting essentially of an adsorbent impregnated with elemental iron, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon. In one embodiment, the adsorbent is activated carbon.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: May 31, 2016
    Assignee: Remediation Products, Inc.
    Inventors: Scott Noland, Bob Elliott
  • Patent number: 9321859
    Abstract: Olefin polymerization is carried out with a supported phosphinimine catalyst which has been treated with a long chain substituted amine compound.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 26, 2016
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Patrick Lam, Victoria Ker, Cliff Robert Baar, Charles Ashton Garret Carter, Yan Jiang
  • Patent number: 9321864
    Abstract: The present invention relates to a catalyst composition for the polymerisation of olefins comprising a support containing a single site catalyst component, a catalyst activator and a modifier wherein the modifier is the product of reacting an aluminum compound of general formula AI(R1, R2, R3) with an amine compound of general formula N(R4, R5, R6). The catalyst composition reduces fouling and/or sheeting when used to catalyse the polymerisation of olefins. The present invention also relates to a method for the polymerisation of olefins using the catalyst composition of the invention.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: April 26, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Bart Albertus Hubertus van den Esschert, Maria Johanna Willems, Abdulaziz Hamad Al-Humydi, Yahya Banat, Atieh Aburaqabah, Said Fellahi
  • Patent number: 9284389
    Abstract: A bimodal polyethylene copolymer comprising a lower molecular weight (LMW) component and a higher molecular weight (HMW) component, the copolymer having a z-average molecular weight (Mz) of from about 1,000 kg/mol to about 2,500 kg/mol, a weight fraction of the LMW component (LMW fr.) of from about 0.60 to 0.85, a ratio of a weight average molecular weight (Mw) of the HMW component (HMW Mw) to a Mw of the LMW component (LMW Mw) of from about 14 to about 25, a zero shear viscosity (?0) of from about 5×105 Pa-s to about 1×107 Pa-s and a HMW Mw of from about 800 kg/mol to about 1,500 kg/mol.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: March 15, 2016
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Guylaine St. Jean, Qing Yang, J. Todd Lanier
  • Patent number: 9260538
    Abstract: There is provided a chemically immobilized heterogeneous single site polymerization catalyst represented by Formula I. wherein, M is a Group IV transition metal; R1 is or a functionalized inorganic oxide support selected from the group consisting of such that R8 is a molecule having a carboxylic or sulphonic acid group; R2-R5, are independently, H or a hydrocarbon; R6 is t-butyl; R7 is a functionalized inorganic oxide support selected from the group consisting of such that R8 is a molecule having a carboxylic or sulphonic acid group; and X1 and X2 are independently F, Cl, Br or I. There is also provided a method for the preparation of the chemically immobilized heterogeneous single site polymerization catalyst as represented by Formula I.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: February 16, 2016
    Assignee: Reliance Industries Limited
    Inventors: Krishna Renganath Sarma, Rakshvir Jasra, Kayambu Kannan, Ajit Behari Mathur, Viralkumar Patel, Yogesh P. Patil
  • Patent number: 9181376
    Abstract: Provided is a copolymer of a conjugated diene compound and a non-conjugated olefin, the copolymer being a block copolymer, the conjugated diene compound unit having 1,2 adduct (including 3,4 adduct) content of 5% or less or the conjugated diene compound unit having a cis-1,4 bond content of more than 92%, in which preferred examples of the conjugated diene compound include 1,3-butadiene and isoprene, and preferred examples of the non-conjugated olefin include ethylene, propylene, and 1-butene.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 10, 2015
    Assignee: BRIDGESTONE CORPORATION
    Inventors: Yasuo Horikawa, Shojiro Kaita, Olivier Tardif, Junko Matsushita
  • Patent number: 9139680
    Abstract: Provided is a block copolymer of a conjugated diene compound and a non-conjugated olefin, a rubber composition including the block copolymer, a crosslinked rubber obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition. The copolymer of the present invention is a block copolymer of a conjugated diene compound and a non-conjugated olefin, the copolymer having a peak area in a temperature range in a range of 70° C. to 110° C. that accounts for at least 60% of a peak area in a range of 40° C. to 140° C. and a peak area in a range of 110° C. to 140° C. that accounts for 20% or less of a peak area in a range of 40° C. to 140° C., the peak areas being measured by the differential scanning calorimetry (DSC) according to JIS K 7121-1987.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: September 22, 2015
    Assignee: BRIDGESTONE CORPORATION
    Inventors: Yasuo Horikawa, Shojiro Kaita, Olivier Tardif, Junko Matsushita
  • Patent number: 9133284
    Abstract: A phosphinimine catalyst immobilized on a passivated inorganic oxide support, had high activity at low co-catalyst concentrations and gave, under gas phase polymerization conditions, ethylene copolymer with a high molecular weight. A method of making a passivated silica support involves treatment of silica with an organoaluminum compound, a diorganomagnesium compound and a source of chloride (to make MgCl2) under anhydrous conditions and in the absence of polar solvents.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: September 15, 2015
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Darryl J. Morrison, Charles Ashton Garret Carter, Amy Marie Baltimore
  • Patent number: 9090720
    Abstract: This invention relates to an activator composition comprising (i) an organoaluminum compounds; (ii) a carbocation compound of the formula R1(X)n; wherein R1 is a hydrocarbyl; n is from 1 to the number of possible substitutions of the hydrocarbyl group and each X is a labile leaving group; and (iii) an aluminoxane. The activator composition may also contain a carrier support. This invention also provides a catalyst composition comprising the activator composition described above and a transition metal component. This invention also provides methods of polymerizing monomer comprising carrying out such polymerization in the presence of one or more catalyst composition according to this invention.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 28, 2015
    Assignee: ALBEMARLE CORPORATION
    Inventors: Lubin Luo, Xiao Wu, Steven P. Diefenbach
  • Patent number: 9079985
    Abstract: A solid, particulate catalyst comprising: (i) a complex of formula (I) wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR?2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; each R18 is a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-hydrocarbyl radical; each W is a 5 or 6 membered aryl or heteroaryl ring wherein each atom of said ring is optionally substituted with at least one R5 group; each R5 is the same or different and is a C1-C20 hydrocarbyl r
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 14, 2015
    Assignee: BOREALIS AG
    Inventors: Luigi Resconi, Pascal Castro, Alexander Z. Voskoboynikov, Vyatcheslav V. Izmer, Dmitry S. Kononovich
  • Patent number: 9073029
    Abstract: A catalyst composition may include a precontacted mixture of an olefin polymerization catalyst and an agent including an ammonium salt. The catalyst activity of the catalyst composition in the presence of water may be greater than if no ammonium salt were present in the catalyst composition. The ammonium salt may include a tetraalkylammonium salt, and the olefin polymerization catalyst may include a metallocene compound.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: July 7, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Randall S. Muninger, Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Graham R. Lief
  • Publication number: 20150148505
    Abstract: The present invention is concerned with a catalyst composition comprising titanium-, zirconium- and/or hafnium amidinate complexes and/or titanium-, zirconium- and/or hafnium guanidinate complexes and organo aluminium and/or organic zinc compounds, a coordinative chain transfer polymerization (CCTP) process employing the catalyst composition as well as long chain aluminium alkyls and subsequent alcohols obtained by such process.
    Type: Application
    Filed: June 3, 2013
    Publication date: May 28, 2015
    Inventors: Thoralf Gross, Holger Ziehe, Rhett Kempe, Winfried Kretschmer, Christian Hubner
  • Publication number: 20150141596
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization with chain transfer agent.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventor: John R. Hagadorn
  • Patent number: 9029285
    Abstract: A catalyst including: a support, the support including a mixture of SiO2 and ZrO2; an active ingredient including copper; a first additive including a metal, an oxide thereof, or a combination thereof; and a second additive including Li, Na, K, or a combination thereof. The metal is Mg, Ca, Ba, Mn, Fe, Co, Zn, Mo, La, or Ce. Based on the total weight of the catalyst, the weight percentages of the different components are as follows: SiO2=50-90 wt. %; ZrO2=0.1-10 wt. %; copper=10-50 wt. %; the first additive=0.1-10 wt. %; and the second additive=0.1-5 wt. %.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Tianjin University
    Inventors: Xinbin Ma, Jing Lv, Yujun Zhao, Shengping Wang, Jinlong Gong, Baowei Wang, Zhenhua Li, Yan Xu
  • Patent number: 9029284
    Abstract: A solid particulate catalyst free from an external carrier comprising: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR?2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-alkyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 independently is hydrogen or a linear or branched C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms from groups 14-16 of the Periodic Table of the Elements; each R2 and R3 taken together form a 4-7 membered ring condensed to the benzene ring of the indenyl moiety, said ring optionally containing heteroatoms from groups 14-16, each atom forming said ring being optionally substituted with at least one R18 radical; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen ato
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 12, 2015
    Assignee: Borealis AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
  • Patent number: 9023959
    Abstract: Methods for the preparation of fluorided-chlorided silica-coated alumina activator-supports are disclosed. These activator-supports can be used in catalyst systems for the production of olefin-based polymers, such as polyethylene and polypropylene.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Uriah Kilgore, Qing Yang, Kathy S. Collins
  • Patent number: 9012347
    Abstract: The present invention relates to a preparation method of a metallocene catalyst. More particularly, the present invention relates to a preparation method of a supported hybrid metallocene catalyst, including the steps of treating a support having a water content of 4 to 7% by weight with trialkyl aluminum at a predetermined temperature; supporting alkyl aluminoxane on the support; and supporting a metallocene compound on the alkyl aluminoxane-supported support. According to the present invention, it is possible to prepare a supported hybrid metallocene catalyst which shows a high activity in the polymerization of olefins and enables the preparation of polyolefins having a high bulk density, by a simple process.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 21, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Dae-Sik Hong, Eun-Kyoung Song, Man-Seong Jeon
  • Patent number: 9012359
    Abstract: Activating supports may be suitably prepared by the following procedure (a) providing a porous mineral oxide support material, (b) treating the support with a phosphorus-containing compound, (c) treating the support from step (b) with an organometallic compound, (d) heating the functionalized support from step (c) under an inert gas and then under an atmosphere comprising oxygen, (e) fluorinating the support with a fluorinating agent, and (f) recovering an activating support. The activating supports are suitable used in combination with single site catalysts for the polymerization of olefins. The supports are most preferably used in combination with metallocene complexes. The preparative route for the activating supports provides for supported polymerization catalyst systems having excellent activities.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Ineos Sales (UK) Limited
    Inventors: Melanie Muron, Gaelle Pannier, Christopher John Whiteoak, Roger Spitz, Christophe Boisson
  • Publication number: 20150105237
    Abstract: Disclosed is a catalytic component for trimerization containing a transition metal complex with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Also disclosed is a trimerization catalyst that is obtained by bringing an olefin copolymerization catalyst and an activating co-catalytic component into contact with one another. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Yasutoyo KAWASHIMA, Takahiro HINO, Taichi SENDA, Masaya TANIMOTO
  • Patent number: 8999875
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Publication number: 20150094435
    Abstract: The present specification describes a transition metal compound having a novel structure, a catalytic composition including the same, and a method for preparing a polymer using the same.
    Type: Application
    Filed: December 5, 2014
    Publication date: April 2, 2015
    Inventors: Yoonhee CHO, Youngshil Do, Yun Jin Lee, A Rim Kim, Choong Hoon Lee, Seung Hwan Jung
  • Patent number: 8987393
    Abstract: The invention relates to a new catalyst component for the polymerization of olefins comprising a compound of formula CyLMZp, wherein M is a Group 4-6 metal, Z is an anionic ligand, p is the number of anionic ligands, Cy is a mono- or poly-substituted cyclopentadienyl-type ligand and L is a guanidinate ligand of the formula wherein: each A is independently selected from nitrogen or phosphorus and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals. The invention also relates to a catalyst system for the polymerization of olefins and a process for the polymerization of at least one olefin having 2 to 20 carbon atoms.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 24, 2015
    Assignee: LANXESS Elastomers B.V.
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Alexandra LeBlanc
  • Patent number: 8987392
    Abstract: The present invention discloses catalyst compositions employing silicon-bridged metallocene compounds with bulky substituents. Methods for making these silicon-bridged metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: March 24, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel L. Martin, Qing Yang, Max P. McDaniel, Jim B. Askew
  • Patent number: 8981023
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: March 17, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co. Ltd.
    Inventors: Hongping Ren, Chuanfeng Li, Xiaoli Yao, Feng Guo, Zhonglin Ma, Haibin Chen, Kaixiu Wang, Jingwei Liu, Yaming Wang
  • Patent number: 8980781
    Abstract: The present invention relates to novel metallocene catalysts of formula I, which is defined herein. The present invention also provides processes for making these catalysts and their use in olefin polymerisation reactions.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 17, 2015
    Assignee: Isis Innovation Limited
    Inventors: Dermot O'Hare, Paul Ransom, Andrew Ashley
  • Publication number: 20150073108
    Abstract: The present invention relates to a high surface area silicon derivative free magnesium-titanium catalyst system for ethylene polymerization comprising: magnesium mixed alkoxide and titanium chloride. The present invention also provides a simple process for the preparation of high surface area silicon derivative free magnesium-titanium catalyst system for ethylene polymerization by reacting magnesium alkoxide precursor with titanium compound using dialkyl dialkoxy silane as external donor. The invention further relates to the process for ethylene polymerization using the silicon derivative free magnesium-titanium catalyst system and polyethylene produced by the catalyst system having narrow molecular weight distribution and higher bulk density.
    Type: Application
    Filed: July 26, 2012
    Publication date: March 12, 2015
    Applicant: Reliance Industries Limited
    Inventors: Harshad Ramdas Patil, Virendrakumar Gupta, Ajay Vinoklal Kothari
  • Patent number: 8975202
    Abstract: The invention provides a polymerization catalyst produced by bringing components (A) to (D) into contact with one another in a hydrocarbon solvent at 30 to 60° C., wherein the component (A) is a transition metal compound, the component (B) is a solid boron compound capable of forming an ion pair with component (A), the component (C) is an organoaluminum compound, and the component (D) is one or more unsaturated hydrocarbon compounds selected from among an ?-olefin, an internal olefin, and a polyene; and the amounts of component (B) and component (C) are 1.2 to 4.0 mol and 5.0 to 50.0 mol, respectively, on the basis of 1 mol of component (A), which catalyst exhibits high activity and can be readily supplied to a polymerization reaction system. The invention also provides a method of storing the polymerization catalyst at 0 to 35° C.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 10, 2015
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Masami Kanamaru, Takenori Fujimura, Minoru Yabukami
  • Publication number: 20150065669
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Errun Ding, Paul DesLauriers, Yongwoo Inn, Lili Cui, Qing Yang, Ashish Sukhadia, Guylaine St. Jean, Richard M. Buck
  • Publication number: 20150057418
    Abstract: A solid polymethylaluminoxane composition is provided having uniform particle diameter in the form of fine particles of less than 5 ?m employed to polymerize olefins with high polymerization activity without silica. A method for manufacturing thereof, a polymerization catalyst, and a method for manufacturing a polyolefin are also provided. The solid polymethylaluminoxane composition: has an aluminum content within a range of 36 mass % to 43 mass %; has a mole fraction of methyl groups derived from trimethylaluminum moieties relative to the total number of mols of methyl groups of 12 mol % or less; and is particulate having a median diameter based on volume within a range of 0.1 ?m to less than 5 ?m. In a step of heating an aromatic hydrocarbon solution containing trimethylaluminum and the polymethylaluminoxane to cause solid polymethylaluminoxane composition to precipitate, prior to or during the heat treating step, a dry, inert gas is bubbled through.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 26, 2015
    Inventors: Eiichi Kaji, Etsuo Yoshioka
  • Patent number: 8962775
    Abstract: A highly active, supported phosphinimine catalyst is fed to a gas phase reactor as a slurry in a liquid hydrocarbon. Feeding the catalyst to a gas phase reactor in a viscous liquid hydrocarbon modifies catalyst initiation kinetics.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 24, 2015
    Assignee: Nova Chemicals (International) S.A
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, P. Scott Chisholm, Rajesh Dahyabhai Patel
  • Patent number: 8962509
    Abstract: Process for the preparation of a solid catalyst system (CS) comprising the steps of preparing a liquid clathrate (LC) comprising (a) a lattice (L) being the reaction product of (i) aluminoxane (A), (ii) an organometallic compound (O) of a transition metal (M) of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and (i) a compound (B) being effective to form with the aluminoxane (A) and the organometallic compound (O) the lattice (L), and (b) a guest (G) being an hydrocarbon compound (HC), and subsequently precipitating said liquid clathrate (LC) obtaining said solid catalyst system (SC).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 24, 2015
    Assignee: Borealis AG
    Inventors: Kalle Kallio, Marja Mustonen, Pertti Elo, Peter Denifl, John Severn
  • Patent number: 8957169
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 17, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co. Ltd.
    Inventors: Xiaoli Yao, Chuanfeng Li, Hongping Ren, Zhonglin Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang
  • Patent number: 8957170
    Abstract: The invention relates to a catalyst system for the polymerization of olefins comprising a metal complex of formula CyLMD and an activating cocatalyst, wherein M is titanium, Cy is a cyclopentadienyl-type ligand, D is a diene, L is an amidinate-containing ligand of formula (1), wherein the amidinate-containing ligand is covalently bonded to the titanium via the imine nitrogen atom, Sub1 is a substituent, which comprises a group 14 atom through which Sub1 is bonded to the imine carbon atom, Sub2 is a substituent, which comprises a nitrogen atom, through which Sub2 is bonded to the imine carbon atom, and Cy is a mono- or polysubstituted cyclopentadienyl-type ligand, wherein the one or more substituents of Cy are selected from the group consisting of halogen, hydrocarbyl, silyl and germyl residues, optionally substituted with one or more halogen, amido, phosphido, alkoxy, or aryloxy residues.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 17, 2015
    Assignee: LANXESS Deutschland GmbH
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Philip Mountford, Alex Heath, Richard T. W Scott
  • Patent number: 8957172
    Abstract: Catalysts comprising a non-symmetrical Salan ligand with a carbazole moiety. Also disclosed are catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 17, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol, Gregory S. Day, David A. Cano
  • Patent number: 8957167
    Abstract: A polymerization process includes contacting the following in a gas-phase reactor system under polymerization conditions for making a polymer product: a metallocene-based catalyst system including a supported constrained geometry catalyst, at least one monomer, and an additive selected from a group consisting of an aluminum distearate, an ethoxylated amine, and a mixture thereof. The additive may be selected from a group consisting of an aluminum distearate, an ethoxylated amine, polyethylenimines, and other additives suitable for use in the production of polymers for food contact applications and end products, including a mixture of a polysulfone copolymer, a polymeric polyamine, and oil-soluble sulfonic acid, in a carrier fluid, and mixtures thereof.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 17, 2015
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Kevin J. Cann, F. Gregory Stakem, Ann M. Schoeb-Wolters, Wesley R. Mariott, James M. Farley, Michael D. Awe
  • Patent number: 8957171
    Abstract: Catalysts comprising salan ligands with carbazole moieties. Also, catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 17, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Gregory S. Day, Matthew W. Holtcamp, Moshe Kol, David A. Cano, Eric D. Whetmore, Konstantin Press
  • Patent number: 8952112
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 10, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Company Ltd.
    Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Zhonglin Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang, Lijuan Yang
  • Patent number: 8952114
    Abstract: Catalysts comprising a halogenated Salan ligand. Also disclosed are catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 10, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol, Gregory S. Day, Konstantin Press
  • Patent number: 8952113
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 10, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Company Ltd.
    Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Lin Kan, Bo Liu, Zhonglin Ma, Feng Guo, Kaixiu Wang, Yaming Wang, Lijuan Yang
  • Patent number: 8946368
    Abstract: The present invention relates to a multi-component catalytic system that can be used for the cis-1,4 stereospecific polymerization of conjugated dienes. The system is based on: (i) a rare-earth complex of Formula (II) Ln(A)3(B)n, Ln being a rare-earth metal, A a ligand, B a Lewis base or a solvent molecule and n a number from 0 to 3; (ii) an alkylating agent; (iii) a compound based on an aromatic ring and having at least two heteroatoms chosen from the elements O, N, S, P, and corresponding to the Formula (III): in which the R groups each denote hydrogen, an alkyl radical optionally comprising one or more heteroatoms (N, O, P, S, Si) or one or more halogen atoms, a halogen atom, a group based on one or more heteroatoms (N, O, P, S, Si); x and y are integers from 0 to 6; D is a group having a chemical function, one of the atoms of which has a non-bonding pair; L being an atom from column 1 of the Periodic Table.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: February 3, 2015
    Assignees: Compagnie Generale des Etablissements, Michelin Recherche et Technique S.A.
    Inventors: Christophe Boisson, Olivier Rolland, Julien Thuilliez
  • Patent number: 8946363
    Abstract: Solid, particulate catalysts comprising bridged bis indenyl ?-ligands are disclosed, together with methods for the preparation and use thereof, for example, in olefin polymerization.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 3, 2015
    Assignee: Borealis AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
  • Publication number: 20150031844
    Abstract: Disclosed is a metallocene catalyst composition for polyolefin polymerization. The metallocene catalyst composition is in a non-supported, heterogeneous form where an ansa-metallocene is bound to a cocatalyst without a support. Also, a method for preparing the catalyst composition, and a method for preparing polyolefin using the catalyst are disclosed. Capable of readily controlling microstructures of olefin polymers in addition to having high catalytic activity, the non-supported heterogeneous catalyst composition can be applied to the preparation of polyolefin polymers at high yield without altering preexisting processes.
    Type: Application
    Filed: November 2, 2012
    Publication date: January 29, 2015
    Inventors: Jin-Woo Lee, Churl-Young Park, Yeongg-Ah Choi, Nan-Young Lee, Dong-Gil Lee
  • Publication number: 20150025206
    Abstract: This invention relates to a novel group 2, 3 or 4 transition metal metallocene catalyst compound having two indenyl ligands with identical substitution including, for example, cyclopropyl groups and substituted phenyl groups at the 2 and 4 positions of the catalyst, respectively, where the substituents are at the 3? and 5? positions of the phenyl groups.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 22, 2015
    Inventors: Jian Yang, Matthew W. Holtcamp, Garth R. Giesbrecht, Gregory S. Day, Jo Ann M. Canich, Lian Xiongdong
  • Publication number: 20150025207
    Abstract: This invention relates to a novel group 2, 3 or 4 transition metal metallocene catalyst compound having at least one arenyl ligand substituted with: 1) a cyclopropyl group and, optionally, 2) at least one other group, such as a hydrocarbyl, a heteroatom or a heteroatom containing group.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 22, 2015
    Inventors: Jo Ann M. Canich, Alexander Z. Voskoboynikov, Dmitry V. Uborsky, Ilya S. Borisov, Alexey A. Tsarev, Pavel S. Kulyabin, Mikhail I. Sharikov, Oleg V. Samsonov, Georgy P. Goryunov
  • Publication number: 20150025208
    Abstract: This invention relates to a novel group 4 transition metal metallocene catalyst compound that is asymmetric having two non-identical indenyl ligands with substitution at R2 having a branched C1-C20 alkyl group, R8 having a linear alkyl group and R4 and R10 having substituted phenyl groups, where at least one of R4 and R10 is a phenyl group substituted at the 3 and 5 position.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 22, 2015
    Inventors: Jian Yang, Xiongdong Lian
  • Publication number: 20150025205
    Abstract: This invention relates to a novel group 2, 3 or 4 transition metal metallocene catalyst compound that is asymmetric having two non-identical indenyl ligands with substitution at R2 having a branched or unbranched C1-C20 alkyl group substituted with a cyclic group or a cyclic group, R8 is an alkyl group and R4 and R10 are substituted phenyl groups.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 22, 2015
    Inventors: Yang Jian, Matthew W. Holtcamp, Garth R. Giesbrecht, Gregory S. Day