Component A Metal Is Group Ia, Iia Or Iiia And Component B Metal Is Group Ivb To Viib Or Viii (i.e., Alkali Metal, Alkaline Earth Metal, Be, Mg, Al, Ga, In Or Tl And Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Iron Group Or Platinum Group) (e.g., Ziegler Catalyst, Etc.) Patents (Class 502/103)
  • Publication number: 20120041160
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8110640
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 7, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Patent number: 8110518
    Abstract: Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 7, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Vladimir Marin, Margarito Lopez, Abbas Razavi, Tim Coffy, Michel Daumerie
  • Patent number: 8101537
    Abstract: A method of producing a prepolymerized catalyst for olefin polymerization comprising a fine powder removal step of removing fine particles from olefin-prepolymerized catalyst particles for olefin polymerization. The prepolymerized catalyst having a low fine particle content is applicable suitably to the field of continuous polymerization of olefins.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: January 24, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tomoaki Goto, Yoshimitsu Onodera
  • Patent number: 8101695
    Abstract: A propylene-based terpolymer comprising: a) from 10.0% by mol to 79.0% by mol of propylene derived units; b) from 89.5% by mol to 20.5% by mol of 1-butene derived units; and c) from 0.5% by mol to 15% by mol of derived units of alpha olefin of formula CH2?CHZ wherein Z is a C4-C20 alkyl radical.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: January 24, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Simona Guidotti
  • Patent number: 8097149
    Abstract: Oil soluble catalysts are used in a process to hydrodesulfurize petroleum feedstock having a high concentration of sulfur-containing compounds and convert the feedstock to a higher value product. The catalyst complex includes at least one attractor species and at least one catalytic metal that are bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The attractor species selectively attracts the catalyst to sulfur sites in sulfur-containing compounds in the feedstock where the catalytic metal can catalyze the removal of sulfur. Because the attractor species selectively attracts the catalysts to sulfur sites, non-productive, hydrogen consuming side reactions are reduced and greater rates of hydrodesulfurization are achieved while consuming less hydrogen per unit sulfur removed.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: January 17, 2012
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Patent number: 8088704
    Abstract: Polymerization catalyst systems including three or more catalyst compounds are provided. Methods for olefin polymerization including the aforementioned catalyst systems are also provided.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 3, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, Dongming Li, Francis C. Rix, Cesar A. Garcia-Franco
  • Patent number: 8084385
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a bridged cyclopentadienyl complex that incorporates a monoanionic hydroxylamido or hydrazido ligand fragment. Suitable complexes have the structure: wherein M is a Group 4 metal; Z is a divalent linking group; X is N or O; each of R1 and R2 is independently C1-C4 alkyl or C6-C10 aryl; R1 and R2 can be joined together; n is 0 when X is O, and n is 1 when X is N; each Y is independently halide, alkyl, dialkylamido, aryl, or aralkyl. A modeling approach is used to identify particular valuable complexes, each of which incorporates a readily synthesized cyclopentadienyl precursor.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 27, 2011
    Assignee: Equistar Chemicals, L.P.
    Inventors: Sandor Nagy, Reynald Chevalier
  • Publication number: 20110312489
    Abstract: This invention relates to fluorinated alkoxy-imino metallic complexes and their use in catalyst systems for the polymerisation or oligomerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 22, 2011
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Jean-Francois Carpentier, Evgueni Kirillov, Christophe Thomas, Abbas Razavi, Nicolas Marquet
  • Patent number: 8080681
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: December 20, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Publication number: 20110306740
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a bridged cyclopentadienyl complex that incorporates a monoanionic hydroxylamido or hydrazido ligand fragment. Suitable complexes have the structure: wherein M is a Group 4 metal; Z is a divalent linking group; X is N or O; each of R1 and R2 is independently C1-C4 alkyl or C6-C10 aryl; R1 and R2 can be joined together; n is 0 when X is O, and n is 1 when X is N; each Y is independently halide, alkyl, dialkylamido, aryl, or aralkyl. A modeling approach is used to identify particular valuable complexes, each of which incorporates a readily synthesized cyclopentadienyl precursor.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Inventors: Sandor Nagy, Reynald Chevalier
  • Patent number: 8076262
    Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: December 13, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
  • Patent number: 8076259
    Abstract: A process for the preparation of a catalyst paste comprising the following steps: a) obtaining a slurry in an organic solvent containing at least: a1) a support bearing functional groups; a2) a trialkylaluminum of formula (Ra)3Al wherein Ra, equal to or different from each other is a C1-C20 hydrocarbon radical optional containing heteroatoms belonging to groups 13-17 of the periodic table of the elements; a3) a compound of formula (I) (R1)x-A-(OH)y??(I) wherein: A is an atom of group 13 or 15 of the Periodic Table; R1 equal to or different from each other, are C1-C40 hydrocarbon radicals optionally containing heteroatoms belonging to groups 13-17 of the periodic table of the elements; Y is 1 or 2; X is 1 or 2; provided that x+y=3; a4) a transition metal organometallic compound; b) washing the resulting slurry one or more times with oil.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: December 13, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Bodo Richter, Gregorius Heike
  • Patent number: 8071800
    Abstract: A borohydride metallocene complex of a lanthanide, its process of preparation, a catalytic system incorporating it, a process for the copolymerization of olefins employing this catalytic system and an ethylene/butadiene copolymer obtained by this process, the butadiene units of which comprise 1,2-cyclohexane or 1,2- and 1,4-cyclohexane links.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 6, 2011
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals France, Centre National de la Recherche Scientifique, Ecole Superieure de Chimie-Physique-Electronique de Lyon (CPE)
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Patent number: 8071700
    Abstract: A borohydride metallocene complex of a lanthanide, its process of preparation, a catalytic system incorporating a borohydride metallocene complex and a process for the copolymerization of olefins employing this catalytic system.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 6, 2011
    Assignees: Michelin Recherche et Technique S.A, Total Petrochemicals France, Centre National de la Recherche Scientifique, Ecole Superieure de Chimie-Physique-Electronique de Lyon (CPE)
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Patent number: 8071499
    Abstract: A catalyst component comprising Ti, Mg, Al, Cl, and optionally ORI groups in which RI is a C1-C20 hydrocarbon group, optionally containing heteroatoms, up to an amount such as to give a molar ORI/Ti ratio lower than 0.5, characterized by the fact that substantially all the titanium atoms are in valence state of 4, that the porosity (PF), measured by the mercury method and due to pores with radius equal to or lower than 1 ?m, is at least 0.3 cm3/g, and by the fact that the Cl/Ti molar ratio is lower than 29. The said catalysts are characterized by high morphological stability under the low molecular weight ethylene polymerization conditions while at the same time maintaining characteristics of high activity.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: December 6, 2011
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Tiziano Dall'Occo, Dario Liguori, Joachim T. M. Pater, Gianni Vitale
  • Patent number: 8067328
    Abstract: A polymerization catalyst composition comprising (1) a transition metal compound of Formula (A), Z being 5-membered heterocyclic containing at least one carbon, at least one nitrogen and at least one of nitrogen, sulphur and oxygen, the others being nitrogen or carbon; M is a Group 3 to 11 metal or a lanthamide metal; E1 and E2 are divalent groups of aliphatic, alicyclic, aromatic or alkyl substituted aromatic hydrocarbon, or heterocyclic; D1 and D2 are donor atoms or groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integer such that X and L satisfy valency/oxidation state of M, (2) a catalyst-activating support which is a solid particulate substance, insoluble in hydrocarbons, comprising at least magnesium and aluminum atoms and hydrocarbyloxy groups containing 1 to 20 carbon atoms, the molar ration of Mg/Al being in the range 1.0 to 300 and the molar ratio of hydrocarbyloxy groups to aluminum atoms being in the range 0.5 to 2.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: November 29, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, Atanas Kostadinov Tomov, Grant Berent Jacobsen
  • Patent number: 8067654
    Abstract: Transition metal catalysts comprise (a) a source of a Group 3 to 10 transition metal, (b) a ligand having the formula: R1R2X—Y—XR3R4 wherein X is phosphorus, arsenic or antimony, Y is a bridging group having the formula: Z-(A)-D-Rm wherein Z is the moiety linking the X groups, A is a linear or cyclic hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl linking group wherein the number of atoms directly linking Z to D is 1, 2 or 3, D is N, P, As, O, S or Se, R is hydrogen, alkyl, hydrocarbyl, substituted hydrocarbyl, heteroalkyl, heterohydrocarbyl or substituted heterohydrocarbyl, and m is 1 or 2, R1, R2, R3, and R4 are the same or different and represent hydrocarbyl or functionalized hydrocarbyl moieties with the proviso that if D is nitrogen, R is not a cyclic ether, and optionally an activator. The transition metal catalysts are suitable for the selective trimerisation or tetramerisation of olefins in particular ethylene.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 29, 2011
    Assignee: Ineos Europe Limited
    Inventors: John E Bercaw, Paul Richard Elowe, Stefan Klaus Spitzmesser
  • Publication number: 20110288308
    Abstract: The invention describes a process for the selective dimerization of ethylene to but-1-ene using a catalytic composition comprising at least one organometallic titanium complex, said organometallic complex containing at least one alkoxy type ligand functionalized by a heteroatom selected from nitrogen, oxygen, phosphorus, sulphur, arsenic and antimony or by an aromatic group.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 24, 2011
    Applicant: IFP Energies nouvelle
    Inventors: Fabian GRASSET, Lionel MAGNA
  • Publication number: 20110287927
    Abstract: The invention describes a process for oligomerization of olefins into compounds or into a mixture of compounds of general formula CpH2p with 4?p?80 that employs a catalytic composition that comprises at least one organometallic complex of an element of group IV that is selected from among titanium, zirconium, or hafnium, whereby said organometallic complex contains at least one alkoxy-type ligand that is functionalized by a heteroatom that is selected from among nitrogen, oxygen, phosphorus or sulfur, or by an aromatic group.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 24, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabien GRASSET, Stephane HARRY, David PRORIOL, Lionel MAGNA
  • Patent number: 8058461
    Abstract: This invention relates to transition metal compounds, catalyst systems comprising said compounds and polymerization processes using such catalyst systems, where the transition metal compound is represented by the formula: This invention also relates to process to produce such compounds.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Mikhail V. Nikulin, Aleksey A. Tsarev, Andrey F. Asachenko, Alexander V. Babkin, Garth R. Giesbrecht, Jo Ann M. Canich
  • Patent number: 8053540
    Abstract: The present invention relates to a catalyst precursor composition for electroless plating, and more specifically, the present invention provides the catalyst precursor composition comprising (a) a reactive oligomer; (b) a reactive monomer; (c) a photoinitiator; (d) a catalyst precursor for electroless plating; and (e) a solvent, and a method of preparing the EMI shielding material with the same. The present invention provides an easy and simple method of preparing the EMI shielding material by using the catalyst precursor composition that contains a UV curable resin with good adhesion to the base material, thereby eliminating the need for pre-treating the base material with a receptive layer before electroless plating.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Seung-Hun Eu, Jang-Hoon Lee
  • Patent number: 8048973
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido group is introduced is coordinated, a catalyst composition including the same, and an olefin polymer using the catalyst composition. The transition metal complex has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, a sterically hindered monomer can easily approach the transition metal complex. By using a catalyst composition including the transition metal complex, a linear low density polyolefin copolymer having a high molecular weight and a very low density polyolefin copolymer having a density of 0.910 g/cc or less can be produced in a polymerization of monomers having large steric hindrance. Further, the reactivity for the olefin monomer having large steric hindrance is excellent.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 1, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun Jung Lee, Seungwhan Jung, Boram Lee, Jung A Lee, Bun Yeoul Lee
  • Publication number: 20110263802
    Abstract: Methods of forming a catalyst, catalysts, polymerization processes and polymers formed therefrom are described herein. The method of forming a catalyst generally includes contacting an alkyl magnesium compound with an alcohol to form a magnesium alkoxide compound; contacting the magnesium alkoxide compound with a first titanium alkoxide and a first agent to form a reaction product “A”, wherein the titanium alkoxide and the first agent are nonblended individual components prior to contacting the magnesium alkoxide; and sequentially contacting the reaction product “A” with a second agent, followed by a third agent, and subsequently a first reducing agent to form a catalyst component.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Lei Zhang, William Gauthier
  • Patent number: 8043530
    Abstract: A fuel reformer catalyst includes a substrate, and disposed thereon a carrier and combination of at least two metals selected from the group consisting of Rh, Ni, Ir, Pd, Pt, Au, and combinations thereof. Rh is present in the catalyst in an amount not exceeding about 0.5 wt. %, based on the total combined weight of the metals and carrier.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: October 25, 2011
    Assignee: Umicore G & Co. KG
    Inventors: Laiyuan Chen, Jeffrey G. Weissman
  • Patent number: 8044155
    Abstract: A catalyst system obtainable by the process comprising the steps of contacting an adduct of formula (I) MgT2.yAlQj(OR?)3-j??(I) wherein T is chlorine, bromine, or iodine; R? is a linear or branched C1-C10 alkyl radical; y ranges from 1.00 to 0.05; and j ranges from 0.01 to 3.00; with at least one metallocene compound having titanium as central metal and at least one ligand having a cyclopentadienyl skeleton.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: October 25, 2011
    Assignee: Stichting Dutch Polymer Institute
    Inventors: John Richard Severn, John Clement Chadwick
  • Patent number: 8030241
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 4, 2011
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 8026324
    Abstract: A transition metal complex of the following formula (1): in which A represents an atom of Group 16 of the periodic table; B1 represents an atom of Group 14 of the periodic table; M1 represents a transition metal atom of Group 4 of the periodic table; Cp1 represents a group having a cyclopentadiene anion backbone; R1, R2, R3, R4, R5 and R6 represent independently of one another a hydrogen atom, a halogen atom, a C1-20 alkyl group optionally substituted with a halogen atom; R7, R8, R9, R10, R11 and R12 represent independently of one another a hydrogen atom, a C1-20 alkyl group optionally substituted with a halogen atom; and a 1,3-diene comprising R7, R8, R9, R10, R11, R12 and 4 carbon atoms coordinates on M1, and the 1,3-diene may be of either a cis or trans form, or a mixed form thereof, although the coordination form is not limited, and the double bonds may be delocalized.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: September 27, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hidenori Hanaoka, Masaaki Nabika
  • Patent number: 8022005
    Abstract: This invention relates to an activator, catalyst system, and the use thereof. In one aspect, the catalyst system includes one or more polymerization catalysts and at least one activator. The activator comprises one or more heterocyclic heteroatom containing ligands coordinated to an alumoxane, wherein the activator is a reaction product of one or more alumoxanes and one or more heterocyclic heteroatom containing compounds, the one or more heterocyclic heteroatom containing ligands represented by the formula: where Y is O, S, PH or NH; wherein each substituent X2, X3, X4, X5, X6, and X7 is independently selected from the group consisting of hydrogen, chlorine, fluorine, iodine, and bromine, provided at least one of X2, X3, X4, X5, X6 and X7 is not hydrogen when Y is NH; and wherein the ratio of the heterocyclic heteroatom containing ligand to aluminum is between about 0.01 and about 10 molar equivalents. The catalyst system may be supported or non-supported.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 20, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Renuka N. Ganesh
  • Publication number: 20110224391
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization to produce multimodal polyolefins.
    Type: Application
    Filed: May 24, 2011
    Publication date: September 15, 2011
    Inventors: JOHN R. HAGADORN, RENUKA N. GANESH
  • Patent number: 8017541
    Abstract: The present invention discloses catalyst components based on ferrocenyl ligands, their method of preparation and their use in the polymerization of olefins.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: September 13, 2011
    Assignees: Total Petrochemicals Research Feluy, Centre National de al Recherche Scientifiqaue (CNRS)
    Inventors: Cyril Revault, Olivier Lavastre, Sabine Sirol
  • Patent number: 8012903
    Abstract: Methods are provided to prepare a catalyst system that includes at least one titanium compound, at least one magnesium compound, at least one electron donor compound, at least one activator compound, and at least one silica support material, the at least one silica support material having a median particle size in the range of from 20 to 50 microns with no more than 10% of the particles having a size less than 10 microns and no more than 10% of the particles having a size greater than 50 microns and average pore diameter of at least ?220 angstroms.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: September 6, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Maria A. Apecetche, Phuong A. Cao, Michael D. Awe, Ann M. Schoeb-Wolters, Ryan W. Impelman
  • Patent number: 8003558
    Abstract: Disclosed are 1,8-naphthyl diaryloates, methods of making 1,8-naphthyl diaryloates, methods of using 1,8-naphthyl diaryloates, solid titanium catalyst components, catalyst systems containing solid titanium catalyst components, methods of making solid titanium catalyst components, and polymerization methods. The solid titanium catalyst components contain a 1,8-naphthyl diaryloate internal electron donor compound. The catalyst system can contain a solid titanium catalyst component, an organoaluminum compound, and an organosilicon compound.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: August 23, 2011
    Assignee: BASF Corporation
    Inventor: Main Chang
  • Patent number: 7999048
    Abstract: There is provided a process for producing a prepolymerization catalyst for polymerization of an olefin, said process comprising the steps of feeding, to a polymerization reactor, an olefin and a solid catalyst component in which a catalyst component for polymerization of the olefin is carried on a fine particle support, and prepolymerizing the olefin in the presence of the solid catalyst component in the polymerization reactor, to thereby obtain the prepolymerization catalyst in which the olefin is prepolymerized on the solid catalyst component, characterized in that said solid catalyst component is pressure-fed to the polymerization reactor from a catalyst feeder connected to the polymerization reactor, and in that the inner pressure of the catalyst feeder at the start of the pressure-feeding is set at (Pr+0.0001) to (Pr+1) (MPa in unit) (in which Pr represents the inner pressure of the polymerization reactor (MPa in unit) at the start of the pressure-feeding).
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Tomoaki Goto
  • Patent number: 7998894
    Abstract: The present invention relates to a Ziegler-Natta catalyst comprising a solid, ligand-modified catalyst component formed at least from (a) a compound of Group 1 to 3 of the Periodic Table (IUPAC), (b) a transition metal compound of Group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide, (c) one or more organic ligand compound(s) which is/are selected from organic compounds comprising a cyclopentadienyl anion backbone, and (d) a compound of Group 13 of the Periodic Table, wherein the catalyst component of said Ziegler-Natta catalyst is formed in an emulsion/solidification method, to a process for the production of such a catalyst, and to a process for the production of an olefin (co-)polymer in the presence of such a catalyst.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Borealis Technology Oy
    Inventors: Marjo Väänänen, Minna Stalhammar, Young-Soo Ko, Siw Fredriksen, Marita Savilahti
  • Patent number: 7999061
    Abstract: A catalytic lactide and glycolide copolymerization system comprising a trifluoromethane sulfonate as a catalyst and copolymerization additive and a copolymerization process.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 16, 2011
    Assignee: IPSEN Pharma S.A.S.
    Inventors: Blanca Martin-Vaca, Anca Dumitrescu, Lidija Vranicar, Jean-Bernard Cazaux, Didier Bourissou, Roland Cherif-Cheikh, Frédéric Lacombe
  • Patent number: 7989565
    Abstract: Process for making a copolymer by copolymerising (1) ethylene with (2) at least one comonomer selected from aliphatic C3-C20 alpha-olefins and (3) 5-ethylidene-2-norbornene, including contacting the monomer with a catalyst comprising a transition metal compound having the following Formula A, and an activating quantity of a suitable activator of the formula shown herein, wherein Z comprises a five-membered heterocyclic group, the five membered heterocyclic group containing at least one carbon atom, at least one nitrogen atom and at least one other hetero atom selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being selected from nitrogen and carbon; M is a metal from Group 3 to 11 of the Periodic Table or a lanthanide metal; E1 and E2 are divalent groups independently selected from (i) aliphatic, hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon, (v) heterocyclic groups and (vi) heterosubstituted derivatives of said groups
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: August 2, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, David John Jones, Grant Berent Jacobsen, Richard James Long
  • Patent number: 7989383
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 2, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Publication number: 20110184138
    Abstract: Catalyst compositions for the polymerization of olefins having improved flowability properties are provided.
    Type: Application
    Filed: October 1, 2009
    Publication date: July 28, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Agapios K. Agapiou, Jeevan S. Abichandani
  • Publication number: 20110172380
    Abstract: Provided are transition metal catalytic systems for preparing ethylene homopolymers or copolymers of ethylene with ?-olefins. More specifically, provided are Group 4 transition metal catalysts, which is characterized in that the Group 4 transition metal catalyst comprises around the Group 4 transition metal a cyclopentadiene derivative, and at least one naphthoxide ligand(s) having aryl substituent(s) that function(s) as an electron donor and serve(s) to stabilize the catalyst system by surrounding an oxygen atom that links the ligand to the transition metal at 2-position, and there is no cross-linkage between the ligands; catalytic systems comprising such transition metal catalyst and aluminoxane cocatalyst or boron compound cocatalyst; and processes for preparing ethylene homopolymers or copolymers of ethylene with ?-olefins by using the same.
    Type: Application
    Filed: September 24, 2009
    Publication date: July 14, 2011
    Applicant: SK ENERGY CO., LTD
    Inventors: Myungahn Ok, Dongcheol Shin, Jisu Jeong, Jongsok Hahn, Hoseong Lee, Daeho Shin
  • Patent number: 7971671
    Abstract: A drive unit (1) for driving a hydraulic pump has an electric motor (2) for driving the hydraulic pump (100) of a construction working machine and also has a generator (3) for supplying electricity to the electric motor (2). A generation module (14) of the generator (3) has a structure where a large number of electrode assemblies (42) are serially connected between fastening plates (41) in a condition that partition plates (44) are sandwiched between the respective electrode assemblies (42). Liquid fuel for generating hydrogen and air are supplied to the electrode assemblies (42) to generate electric power. Unlike the case where the hydraulic pump (100) is driven by a diesel engine etc., the hydraulic pump drive unit has a low noise level and emits no exhaust gas, so that the device is extremely advantageous to reduce noise and exhaust gas of a construction working machine.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: July 5, 2011
    Inventor: Mitsuru Suematsu
  • Patent number: 7972987
    Abstract: The present invention relates to a novel cyclopentadienyl compound, a fourth group transition metal compound having the cyclopentadienyl compound, a method of preparing the fourth group transition metal compound, a method of preparing an olefin polymer by using the fourth group transition metal compound, and an olefin polymer prepared by using the method.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: July 5, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jung-A Lee, Bo-Ram Lee, Eun-Jung Lee, Seung-Whan Jung, Choong-Hoon Lee
  • Patent number: 7973114
    Abstract: Monocyclopentadienyl complexes in which the cyclopentadienyl system bears at least one unsubstituted, substituted or fused, heteroaromatic ring system bound via a specific bridge, a catalyst system comprising at least one of the monocyclopentadienyl complexes, the use of the catalyst system for the polymerization or copolymerization of olefins and a process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of the catalyst system and polymers obtainable in this way.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 5, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Ilya Nifant'ev
  • Patent number: 7968660
    Abstract: This invention relates to a method for producing carbon nanotubes in a dispersed state. The method comprises a stage whereby polymerization is carried out from at least one so-called monomer of interest, in the presence of a catalytic system. The catalytic system comprises a co-catalyst/catalyst catalytic couple that is supported by a catalyst carrier, which corresponds to said carbon nanotubes. The invention also relates to composite materials obtained by said method, and to a catalytic system for implementing said method. The invention further relates to the use of the inventive method and products in a field of polymers, especially that of nanotechnologies.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: June 28, 2011
    Assignee: Nanocyl S.A.
    Inventors: Philippe Dubois, Michael Alexandre, Daniel Bonduel, Michael Mainil
  • Publication number: 20110144291
    Abstract: The present invention relates to the field of group 4 post-metallocene complexes based on sterically encumbered bis(naphtoxy)pyridine and bis(naphtoxy)thiophene ligands. It also relates to the use of such post-metallocene complexes in the polymerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: February 17, 2009
    Publication date: June 16, 2011
    Applicants: TOTAL PETROCHEMCALS RESEARCH FELUY, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Jean-Francois Carpentier, Evgueni Kirillov, Abbas Razavi
  • Patent number: 7956139
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridged ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and an activator. The bridged ?5-cyclopentadienyl-type ligands are connected by a cyclic substituent.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: June 7, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Tony R. Crain
  • Patent number: 7956148
    Abstract: The present invention relates to a process for the preparation of polypropylene using a catalyst system of low porosity, the catalyst system comprising an asymmetric catalyst, wherein the catalyst system has a porosity of less than 1.40 ml/g.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: June 7, 2011
    Assignee: Borealis Technology Oy
    Inventors: Eberhard Ernst, Manfred Stadlbauer
  • Patent number: 7956003
    Abstract: The present invention discloses catalyst components based on ferricinium ligands, their method of preparation and their use in the polymerisation of olefins.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 7, 2011
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifiqaue (CNRS)
    Inventors: Cyril Revault, Olivier Lavastre, Sabine Sirol
  • Publication number: 20110124831
    Abstract: The present invention relates to a self-assembled olefin polymerization catalyst comprising a transition metal compound according to formula (I) LqMmXn wherein M is a transition metal selected from the group consisting of Group 3-11 of the periodic table; X is independently selected from the group consisting of H, halogen, CN, optionally substituted N(Ra)2, OH, optionally substituted C1-C20 alkyl, optionally substituted C1-C20 alkoxy, wherein Ra is independently selected from the group consisting of optionally substituted C1-C20 alkyl, optionally substituted C6-C20 aryl and halogen; q is an integer of at least 2; m is an integer of at least 2; n is an integer making (I) electrically neutral; L is independently a ligand which has at least two linked coordination units, wherein each coordination unit binds to a different transition metal.
    Type: Application
    Filed: January 14, 2008
    Publication date: May 26, 2011
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventor: He-Kuan Luo
  • Patent number: RE42957
    Abstract: A process for producing an olefin polymer is provided, in which ethylene and at least one kind or more of monomers selected from ?-olefins are polymerized by a high temperature solution polymerization in a temperature range between 120 and 300° C., in the presence of an olefin polymerization catalyst composed of a bridged metallocene compound represented by general formula [I] described below and at least one kind or more compounds (B) selected from (b-1) an organoaluminum oxy-compound, (b-2) a compound capable of forming an ion pair in a reaction with the bridged metallocene compound mentioned above, and (b-3) an organoaluminum compound.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 22, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Tohi, Kenji Sugimura, Toshiyuki Tsutsui