Gas Or Vapor Treating Patents (Class 502/34)
  • Publication number: 20120083637
    Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.
    Type: Application
    Filed: August 26, 2011
    Publication date: April 5, 2012
    Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
  • Patent number: 8119551
    Abstract: The present invention is for a catalyst, a process for making the catalyst and a process for using the catalyst in aromatization of alkanes having three to five carbon atoms per molecule, such as propane, to aromatics, such as benzene, toluene and xylene. The catalyst is an aluminum-silicon zeolite having a silicon to aluminum atomic ratio (Si:Al) greater than 15:1, such as MFI or ZSM-5, on which germanium, aluminum and a noble metal, such as platinum, have been deposited. The catalyst may be bound with magnesia, alumina, titania, zirconia, thoria, silica, boria or mixtures thereof. The aluminum and germanium may be deposited simultaneously on the zeolite.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: February 21, 2012
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott Stevenson, Gopalakrishnam G. Juttu, Michael Mier, Robin J. Bates, Dustin Farmer, Scott Mitchell, Alla K. Khanmamedova
  • Patent number: 8114802
    Abstract: A process to upgrade heavy oil and convert the heavy oil into lower boiling hydrocarbon products is provided. The process employs a catalyst slurry comprising catalyst particles with an average particle size ranging from 1 to 20 microns. In the upgrade process, spent slurry catalyst in heavy oil is generated as an effluent stream, which is subsequently recovered/separated from the heavy oil via membrane filtration. In one embodiment, residual hydrocarbons, i.e., heavy oil and solvent employed in the filtration for the heavy oil extraction are removed from the catalyst particles with the use of a cleaning solution comprising a sufficient amount of at least a surfactant for removing at least 90% of the hydrocarbons from the catalyst particles. In one embodiment, ultrasonic cleaning is also used for the removal of hydrocarbons. In another embodiment, a plasma source is employed for the volatilization of the hydrocarbons.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: February 14, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventor: Seyi A. Odueyungbo
  • Patent number: 8101145
    Abstract: An exhaust treatment system is provided. Method of increasing activation of NOx reduction catalyst using two or more reductant is discussed. The exhaust treatment system includes an exhaust source, a reductant source, a nitrogen oxide (NOx) reduction catalyst, a sensor, and a controller. The reductant source includes a first reductant and second reductant, and is disposed to inject a reductant stream into an exhaust stream from the exhaust source. The NOx catalyst is disposed to receive both the exhaust stream and reductant stream. The sensor is disposed to sense a system parameter related to carbon loading of the catalyst and produce a signal corresponding to the system parameter. The controller is disposed to receive the signal and to control dosing of the reductant stream based at least in part on the signal.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: January 24, 2012
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar, Dan Hancu, Stanlee Teresa Buddle
  • Patent number: 8082878
    Abstract: Thermal evaporation apparatus for depositing of a material on a substrate, comprising material storage means; heating means to generate a vapor of the material in the material storage means; vapor outlet means comprising a vapor receiving pipe having vapor outlet passages, and emission reducing means arranged such that an external surface of the vapor outlet means directed to said substrate exhibits low emission, and wherein the apparatus further comprises pipe heating means in the interior of said vapor outlet means, wherein at least the surfaces of the material storage means, heating means, and emission reducing means and pipe heating means arranged to come into contact with the material vapor are of a corrosion-resistant material.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 27, 2011
    Assignee: Saint-Gobain Glass France
    Inventors: Volker Probst, Walter Stetter
  • Patent number: 8080224
    Abstract: Use of a catalyst composition comprising a metal selected from the group consisting of ruthenium, rhodium, nickel and combinations thereof, on a support selected from the group consisting of a beta-zeolite, mordenite and faujasites, is taught for carbon oxide methanation reactions for fuel cells. Specifically, when a mixture of gases containing hydrogen, carbon dioxide, carbon monoxide, and water is passed over the catalyst in a reaction zone having a temperature below the temperature at which the shift reaction occurs and above the temperature at which the selective methanation of carbon monoxide occurs, the catalyst efficiently facilitates the selective hydrogenation of carbon monoxide using H2 that is present in the reformate and reduces the concentration of the CO to levels equal to or less than about 50 ppm and demonstrates a carbon monoxide (CO) methanation selectivity of greater than about 50%.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: December 20, 2011
    Assignee: Sud-Chemie Inc.
    Inventors: Hiroshi Takeda, Troy L. Walsh, Jon P. Wagner
  • Patent number: 8062507
    Abstract: A process for stripping gases from catalyst material in which catalyst travels down baffles at a first acute angle and then at a second acute angle on the same baffle. Traveling down the baffle at the second angle assures the catalyst will cross a downcomer channel and land on an adjacent baffle.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventors: Jason P. Lambin, Keith A. Couch, Paolo Palmas, Giovanni Spinelli
  • Publication number: 20110281720
    Abstract: A method of using a catalyst comprises exposing a catalyst to at least one reactant in a chemical process. The catalyst comprises copper and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms. The chemical process undergoes at least one period of exposure to a reducing atmosphere. The catalyst has an initial activity and the catalyst has a final activity after the at least one period of exposure to the reducing atmosphere. The final activity is within 30% of the initial activity at a temperature between 200 and 500° C.
    Type: Application
    Filed: July 25, 2011
    Publication date: November 17, 2011
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Paul Joseph Andersen, Hai-Ying Chen, Joseph Michael Fedeyko, Erich Weigert
  • Publication number: 20110280782
    Abstract: Carbon monoxide is removed from streams by adsorption on an adsorption composition which comprises copper and zirconium oxides but no zinc oxide, which comprises from 70 to 99.8% by weight of copper oxide and from 0.2 to 30% by weight of zirconium oxide, based on the total amount of the adsorption composition.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Applicant: BASF SE
    Inventors: Stephan Hatscher, Michael Hesse
  • Publication number: 20110245355
    Abstract: A process for regenerating a spent particulate wax-containing cobalt-based Fischer-Tropsch synthesis catalyst is provided. The process includes subjecting the spent wax-containing catalyst sequentially to a dewaxing treatment, an oxidation treatment and a reduction treatment. During the dewaxing treatment, the spent wax-containing catalyst is at least partially dewaxed, with dewaxed catalyst particles being produced. During the oxidation treatment, an oxygen-containing gas is passed through a bed of the dewaxed catalyst particles at an operating temperature T° C. where 150<T<450, and the operating temperature is controlled by removing heat from the catalyst particle bed using a cooling device, to obtain oxidized catalyst particles. During the reduction treatment, the oxidized catalyst particles are reduced, thereby regenerating the catalyst.
    Type: Application
    Filed: November 13, 2009
    Publication date: October 6, 2011
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jan Van De Loosdrecht, Willem Adriaan Booysen
  • Patent number: 8007660
    Abstract: A reduced puffing needle coke is formed from decant oil, which includes a lesser amount of nitrogen within the coke so that carbon articles produced from such coke experience minimal expansion upon heating to graphitization temperatures.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 30, 2011
    Assignee: GrafTech International Holdings Inc.
    Inventors: Douglas J. Miller, Ching-Feng Chang, Irwin C. Lewis, Aaron Tomasek, Richard L. Shao
  • Patent number: 8007659
    Abstract: A reduced puffing needle coke is formed, which includes a reduced nitrogen content within the coke so that the coke particles do not experience as much puffing during the formation of graphitized carbon articles produced from such coke upon heating to graphitization temperatures.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 30, 2011
    Assignee: GrafTech International Holdings Inc.
    Inventors: Douglas J. Miller, Ching-Feng Chang, Irwin C. Lewis, Richard T. Lewis, Aaron Tomasek, Richard L. Shao
  • Patent number: 8007658
    Abstract: A reduced puffing needle coke is formed, which includes a lesser amount of nitrogen within the coke so that carbon articles produced from such coke experience minimal expansion upon heating to graphitization temperatures.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 30, 2011
    Assignee: GrafTech International Holdings Inc.
    Inventors: Douglas J. Miller, Ching-Feng Chang, Irwin C. Lewis, Aaron Tomasek, Richard L. Shao
  • Publication number: 20110207597
    Abstract: The present disclosure relates to methods for treating an SCR catalyst or components of an SCR system having a decreased NOx potential efficiency as a result of particulate pluggage in the system or in one or more channels in the SCR catalyst which renders at least a portion of the catalytic active areas inaccessible for the flue gas. The methods include removal of the particulates and plug(s) using a blasting stream of a pressurized carrier gas having a particulate blasting medium directed at the SCR catalyst or component of an SCR system.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Applicant: Evonik Energy Services, LLC
    Inventors: Carsten Tembaak, Birgit L. Marrino, Albert Joseph Stier
  • Patent number: 7998893
    Abstract: The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the air feed to the catalyst regenerator is free of or substantially free of metal salts. The air feed is preferably purified by passage through a rotary adsorbent contactor or adsorbent wheel.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: August 16, 2011
    Assignee: UOP LLC
    Inventor: Peter R. Pujado
  • Publication number: 20110190113
    Abstract: The present invention relates to a continuous catalyst regeneration device comprising at least one burning zone formed by at least one annular combustion zone (3), centred along a longitudinal axis (A), in which the catalyst circulates, an inlet conduit of the catalyst (4) and an outlet conduit of the catalyst (4?), an external zone (11) for circulation of a combustive gas disposed around the annular combustion zone (3) and an internal circulation zone (15) disposed inside the annular combustion zone (3), wherein the burning zone is divided into sectors (14) by hermetic longitudinal plates (10) disposed radially relative to the longitudinal axis (A) of the regenerator. The invention also relates to the process using this device.
    Type: Application
    Filed: July 23, 2009
    Publication date: August 4, 2011
    Inventors: Beatrice Fischer, Eric Sanchez, Gilles Ferschneider
  • Patent number: 7985704
    Abstract: A method of regenerating an absorbent includes preparing a reactor having a gas inlet portion and a discharge portion, filling the reactor with a reforming catalyst and an absorbent for absorbing carbon dioxide, feeding the feedstock gas and the steam via the gas inlet portion to the reactor to allow a steam reforming reaction to take place, allowing the absorbent to absorb carbon dioxide generated with hydrogen at the steam reforming reaction, and releasing the carbon dioxide from the absorbent after the carbon dioxide absorption capacity of the absorbent has been degraded. In this method, the temperature in an inside of the reactor is set to 625° C. or more at the release of the carbon dioxide, and an inert gas is fed via the discharge portion to the reactor.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Essaki, Takehiko Muramatsu, Masahiro Kato, Yasuhiro Kato
  • Patent number: 7981832
    Abstract: New methods for activating chromium catalysts for polymerization processes decrease the amount of time required for activation and increase catalyst activity. Rapid heating to a first temperature is followed by a first hold period before heating to a higher second temperature and maintaining the second temperature for a second hold period. In one aspect, the overall activation process takes less than 10 hours.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: July 19, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Patent number: 7981825
    Abstract: Systems and methods that facilitate operating proton exchange membrane (PEM) fuel cells are provided. The methods can involve contacting a reducing agent comprising a mixture of hydrogen and nitrogen, or a reducing plasma with a cathode catalyst of a proton exchange membrane fuel cell to reduce the cathode catalyst. The systems employ a fuel supply component that supplies fuel to the proton exchange membrane fuel cell; and a regeneration component that provides a reducing agent comprising a mixture of hydrogen and nitrogen, or a reducing plasma to a cathode catalyst of the proton exchange membrane fuel cell to reduce the cathode catalyst.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 19, 2011
    Assignee: Spansion LLC
    Inventors: Tim Z. Hossain, Daniel E. Posey
  • Patent number: 7968068
    Abstract: The present invention is directed to a novel metal-promoted zeolite catalyst, a method of producing the catalyst and a method of using the catalyst for the selective catalytic reduction of NOx with improved hydrothermal durability. The novel metal-promoted zeolite is formed from a low sodium zeolite and is hydrothermally treated after metal ion-exchange.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 28, 2011
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Ahmad Moini, Gerald Stephen Koermer, Joseph Allan Patchett, William Michael Jaglowski, Stanley Roth
  • Publication number: 20110152582
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 23, 2011
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Patent number: 7964168
    Abstract: The CO2 contained in combustion fumes is captured by carrying out at least the following steps in combination: a) a fuel is burned, producing combustion fumes; b) the fumes are placed in contact with an absorbent solution in order to produce CO2-poor fumes and a CO2-laden solution; c) the CO2-laden solution is regenerated in a thermal regeneration column (RE) in order to produce a regenerated absorbent solution and a CO2-rich gaseous effluent (5); and d) the CO2-rich gaseous effluent is cooled in order to obtain a CO2-enriched gaseous fraction which is evacuated, and a liquid fraction, which is heated by heat exchanged with the combustion fumes and then introduced at the head of regeneration column (RE) as reflux (7).
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: June 21, 2011
    Assignees: IFP, ALSTOM Technology Ltd.
    Inventors: Thorsten Burkhardt, Pierre-Antoine Bouillon, Jean-Claude Magdelenat
  • Patent number: 7960303
    Abstract: The invention is an apparatus and method to remove hydrogen sulfide and siloxanes from biogas and destroy the contaminants in microwave reactors. Hydrogen sulfide and siloxane are removed from biogas using an adsorbent media such as activated carbon. The media is regenerated in a microwave reactor where the hydrogen sulfide and siloxane are removed in a sweep gas. In one process, siloxane is oxidized to silicon dioxide in a second microwave reactor and removed with a filter. Hydrogen sulfide if first oxidized to sulfur dioxide, then reduced to sulfur in a third microwave reactor and removed with a filter. In another process, siloxane is combined with water to form silicon dioxide and hydrogen sulfide is reduced to elemental sulfur in a microwave reactor. These reactants are removed with a filter. The remaining sweep gas containing hydrogen and low molecular weight hydrocarbons is returned to the biogas stream.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: June 14, 2011
    Assignee: CHA Corporation
    Inventor: Chang Yul Cha
  • Publication number: 20110137101
    Abstract: A process for catalyst regeneration is presented. The process regenerates a catalyst in a paraffin dehydrogenation process, where the reaction is endothermic. The regeneration process provides the heat for the process through heating the catalyst and removes the need for a charge heater to the dehydrogenation reactor, which in turn eliminates high temperature thermal residence time which eliminates thermal cracking of the feed and improves the overall product selectivity. In addition, plot area, equipment costs and operating complexity are reduced.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Applicant: UOP LLC
    Inventors: David N. Myers, Daniel N. Myers
  • Publication number: 20110137093
    Abstract: The present invention relates to the use of atomic layer deposition (ALD) techniques to enhance the acid catalytic activity of nanoporous materials.
    Type: Application
    Filed: June 7, 2010
    Publication date: June 9, 2011
    Inventors: Johan Martens, Davy Deduytsche, Christophe Detavernier, Sreeprasanth Pulinthanathu Sree
  • Patent number: 7951739
    Abstract: An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 31, 2011
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Chris Santner, Eusebius Gbordzoe, Harvey McQuiston
  • Patent number: 7951740
    Abstract: A method for regenerating desulfurization sorbents that minimizes the in situ formation of one or more silicates. It has been discovered that regenerating sulfur-laden sorbent particles in a carbon oxide-rich environment unexpectedly reduces the in situ silicate formation rate, as compared to similar sorbents regenerated using conventional methods.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: May 31, 2011
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Robert W. Morton, Roland Schmidt, Glenn W. Dodwell, Gregory C. Allred
  • Publication number: 20110118105
    Abstract: The disclosure relates to apparatus, systems, and methods (a) for performing catalytic reactions using a fixed-bed catalyst (e.g., packed particulate bed or catalyst supported on a monolithic substrate) and (b) for regenerating the catalytic activity of the catalyst. An autothermal reformation (ATR) reaction system is described for illustrative purposes, although the apparatus, systems, and methods can be applied more generally to other catalytic cracking/reformation reaction systems and other catalytic reaction systems, in particular reaction systems in which carbon-based and/or sulfur-based catalyst contaminants are produced during system operation.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Applicant: The Regents of the university of Michigan
    Inventors: Johannes Schwank, Steven Edmund
  • Publication number: 20110065567
    Abstract: An apparatus and process for isomerizing a hydrocarbon stream rich in a C4 hydrocarbon and/or at least one of a C5 and C6 hydrocarbon which includes a first drier and a second drier; and a reaction zone communicating with at least the first drier. The first drier operates at a first condition to dry the reactant and the second drier operates at a second condition during regeneration. The used regenerant remaining in the second drier after regeneration can (1) pass through a vent-to-flare assembly in a batch-wise manner; (2) pass through a downflow-depressure-to-low-pressure-device assembly in a batch-wise manner; (3) pass through a cross-over piping purge assembly to minimize upsets in the reaction and fractionation zones when the second drier is placed back in operation; or any combination of (1) (2) and/or (3) to minimize upsets in the reaction and fractionation zones when the second drier is placed back in operation.
    Type: Application
    Filed: November 17, 2009
    Publication date: March 17, 2011
    Applicant: UOP LLC
    Inventors: Bryan S. Garney, Jocelyn C. Daguio, Kurt A. Detrick, David J. Shecterle, John M. Krupczak, Andrew D. Mezera, Douglas A. Becci
  • Patent number: 7897827
    Abstract: Processes and systems are disclosed that relate to the removal of impurities and separation the light olefins from an MTO product vapor stream. Specifically, the processes and systems relate to recovery of light olefins during regeneration of an adsorber in an oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can include recycling residual effluent stream to an upstream operation unit upstream of the oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can also include recycling residual effluent gas produced by depressurizing residual effluent in the first adsorber, as well as preferably venting an effluent gas from the first adsorber to a compressor upstream of the oxygenate removal unit.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: March 1, 2011
    Assignee: UOP LLC
    Inventor: Jason T. Corradi
  • Patent number: 7884048
    Abstract: Carbon monoxide is removed from streams by adsorption on an adsorption composition which comprises copper, zinc and zirconium oxides and whose copper-comprising component has a degree of reduction, expressed as weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at least 45% and not more than 75%.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 8, 2011
    Assignee: BASF SE
    Inventors: Stephan Schlitter, Stephan Hatscher, Michael Hesse, Heiko Urtel
  • Patent number: 7884045
    Abstract: A process for regenerating a used acidic ionic liquid catalyst, comprising: a. contacting the catalyst and hydrogen with a supported hydrogenation catalyst under hydrogenation conditions; and b. recovering a conjunct polymer that is a clear and colorless oil from the catalyst. A process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers comprising the steps of contacting the used catalyst and hydrogen with a supported hydrogenation catalyst in a reaction zone under hydrogenation conditions in the presence of an inert hydrocarbon in which saturated conjunct polymers are soluble for a time sufficient to hydrogenate at least a portion of the conjunct polymers; and recovering the saturated conjunct polymers. Also, a process comprising: contacting the used acidic ionic liquid catalyst and hydrogen with a hydrogenation catalyst comprising a hydrogenation component under hydrogenation conditions; and recovering a conjunct polymer that is a clear and colorless oil.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: February 8, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Thomas V. Harris, Saleh Elomari
  • Publication number: 20110024687
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) CexByB?zB?O?, wherein B?Ba, Sr, Ca, or Zr; B??Mn, Co, and/or Fe; B??Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; (b) Ce1-x-yNixByO2-*, wherein B?Zr, Ba, Ca, La, or K; 0.02<x<0.1; 0<y<0.1; and 0.02<*<0.15; and 1<?<2.2 and (c) coal ash either as a catalyst material itself or as a support for said unary or binary metal oxides.
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Applicant: ELTRON RESEARCH & DEVELOPMENT, INC.
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Publication number: 20110017061
    Abstract: The invention provides a process for the regeneration of at least one adsorbent bed, comprising at least the steps of: (a) contacting a first adsorbent bed (B1) with a gaseous stream (10) such that at least a portion of adsorbed species in said first adsorbent bed (B1) are released; (b) cooling a second adsorbent bed (B2); wherein a bypass (20) is provided around the second adsorbent bed (B2) and the gaseous stream (10), before contact with the first adsorbent bed (B1), is directed to at least one of (i) the second adsorbent bed (B2), and (ii) the bypass (20) around the second adsorbent bed (B2), wherein the proportion of gaseous stream (10) flowing through the bypass (20) is controlled.
    Type: Application
    Filed: February 2, 2009
    Publication date: January 27, 2011
    Inventor: Anders Carlsson
  • Publication number: 20110021341
    Abstract: A method for separating organosulfur compounds from a liquid is provided. The method of this embodiment comprises contacting the liquid with the microporous coordination polymer to form a MCP-organosulfur inclusion compound.
    Type: Application
    Filed: October 2, 2008
    Publication date: January 27, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Adam J. Matzger, Antek G. Wong-Foy, Katie Cychosz
  • Patent number: 7847142
    Abstract: The regeneration of HF alkylation acid in an alkylation unit is improved by withdrawing a vapor stream from the HF regenerator tower and condensing the stream to form a liquid fraction which is accumulated in a side distillation zone; the collected liquid fraction, comprising HF acid, water and some stripping medium is distilled in a batch or continuous type operation to drive off the HF acid (along with stripping medium) and the vapor is returned to the regenerator-stripper vessel. The distillation of the sidedraw liquid is continued until the composition of the liquid attains the azeotropic value or as near to that value as desired. The azeotrope, comprising water and acid can then be dropped out of the distillation vessel for disposal by neutralization in the conventional way.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Jeffrey M. Fitt, Curtis A. Lawrence, Richard M. Janclaes, Brett Keegan Johnson, Michael W. Boyea, Nicholas Steiner Conley
  • Publication number: 20100292071
    Abstract: A new process for producing a SAPO molecular sieve is disclosed wherein a mixture of a P source with an Al source is subjected to a digestion step under stirring before adding a Si source and a template. The slurry resulting after addition of all chemicals is subjected to a pH adjustment followed by the usual hydrothermal treatment at higher temperature in an autoclave. In this way, very pure highly crystalline SAPO molecular sieves such as SAPO-34 are obtained with a very high yield. In addition, the SAPOs produced this way have an exceptional activity in the dehydration reactions and can be employed as a active component of catalysts for the production of valuable dehydration products from methanol such as, but not limited to, olefins and dimethylether (DME).
    Type: Application
    Filed: June 30, 2008
    Publication date: November 18, 2010
    Applicant: CASALE CHEMICALS S.A.
    Inventors: Cristina Ferrini, Daniel Herein, David Linke, Uwe Rodemerck, Evgeny Kondratenko
  • Publication number: 20100285949
    Abstract: This disclosure relates to a method for rejuvenating a catalyst, comprising contacting the catalyst with a gaseous feedstock at rejuvenation conditions for at least one hour to form a rejuvenated catalyst and a gaseous product, wherein the catalyst comprises at least 10 wt. % of a molecular sieve, wherein the catalyst prior to the contacting step comprises from 0.001 wt. % to 45 wt. % of hydrocarbons and 0.001 to 10 wt.
    Type: Application
    Filed: October 7, 2008
    Publication date: November 11, 2010
    Inventors: Terry Eugene Helton, Vijav Nanda, Wei-Ping Tai, Teresa Ann Jurgens-Kowal, Kathleen Marie Keville
  • Publication number: 20100285948
    Abstract: A process for the pre-treatment of Mo/ZSM-5 and Mo/MCM-22 catalysts is provided, which process comprises heating the catalyst at 500° C. in the presence of propane. The treated catalyst, when used in the non-oxidative dehydrogenation of methane demonstrates improved benzene yield and catalyst stability as compared to catalysts pre-treated with He, methane or H2.
    Type: Application
    Filed: January 16, 2008
    Publication date: November 11, 2010
    Applicants: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH, MITSUI CHEMICALS INC.
    Inventors: Yan Liu, Toru Nishimura
  • Publication number: 20100273640
    Abstract: Carbon monoxide is removed from streams by adsorption on an adsorption composition which comprises copper, zinc and zirconium oxides and whose copper-comprising component has a degree of reduction, expressed as weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at least 45% and not more than 75%.
    Type: Application
    Filed: July 9, 2010
    Publication date: October 28, 2010
    Applicant: BASF SE
    Inventors: Stephan Schlitter, Stephan Hatscher, Michael Hesse, Heiko Urtel
  • Patent number: 7807597
    Abstract: A process for regenerating a used acidic ionic liquid catalyst comprising contacting the used ionic liquid catalyst with at least one ‘regeneration’ metal in a regeneration zone in the presence of added hydrogen under regeneration conditions for a time sufficient to increase the activity of the ionic liquid catalyst is described. In one embodiment, regeneration is conducted in the presence of a hydrocarbon solvent.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: October 5, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Thomas V. Harris
  • Publication number: 20100248943
    Abstract: Regeneration flue gas streams containing unacceptable levels of CO can be effectively combusted (i.e., for more complete combustion or oxidation of CO to CO2) by contact with a second catalyst undergoing regeneration, for example in a second regenerator. While the second catalyst may also be regenerated by contact with an oxygen-containing gas stream, this second catalyst additionally comprises a noble metal, or is present in combination with a combustion comprising a noble metal. Representative catalysts used in an integrated regeneration process are those used for oxygenate conversion and olefin cracking, both for the purpose of producing light olefins (e.g., ethylene and propylene).
    Type: Application
    Filed: March 24, 2009
    Publication date: September 30, 2010
    Inventor: Andrea G. BOZZANO
  • Publication number: 20100240524
    Abstract: A process for regenerating a molecular sieve absorbent bed used for dehydrating an organic solvent is disclosed. The process is illustrated by regenerating a molecular sieve bed used for dehydrating ethanol, which includes a dehydrating cycle where an ethanol/water vapor mixture is loaded onto the molecular sieve bed at a first temperature to absorb water and recover a substantially dehydrated ethanol vapor effluent. In a regeneration cycle, the bed is subjected to a temperature swing technique whereby a dried gas, such as dried CO2, heated to at a second temperature greater than the first temperature, is passed over the molecular sieve bed, optimally in a counter current directional flow with respect to the dehydrating cycle. The process obviates the need for applying a vacuum pressure swing to regenerate the molecular sieve bed. Water and residual ethanol are removed with the CO2 effluent and can optionally be condensed and combined with a feed input for a subsequent dehydrating cycle.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 23, 2010
    Inventors: Ahmad K. Hilaly, Joseph R. Beggin
  • Publication number: 20100222202
    Abstract: Systems and processes for regenerating catalyst are provided herein that include a catalyst regeneration tower having a cooling zone that receives a catalyst cooling stream generated by a cooling gas loop. The systems and processes include a first thermocompressor that utilizes a first motive vapor and a second thermocompressor that utilizes a second motive vapor in order to provide the catalyst cooling stream to the regeneration tower. The second thermocompressor operates in parallel with the first thermocompressor. The first thermocompressor can utilize combustion air as the motive vapor. The second thermocompressor can utilize nitrogen as the motive vapor.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Inventors: Brian Nabozny, William D. Schlueter, Kate Tuson
  • Patent number: 7781368
    Abstract: Carbon monoxide is removed from streams by adsorption on an adsorption composition which comprises copper, zinc and zirconium oxides and whose copper-comprising component has a degree of reduction, expressed as weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at least 45% and not more than 75%.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: August 24, 2010
    Assignee: BASF SE
    Inventors: Stephan Schlitter, Stephan Hatscher, Michael Hesse, Heiko Urtel
  • Patent number: 7781362
    Abstract: Degradation of catalyst activity for silicoaluminophosphate catalysts is minimized for oxygenate-to-olefin reaction systems that are exposed to airborne salt concentrations above a threshold value. When airborne salt concentrations above the threshold value are detected, an air intake flow can be diverted into a cleaning flow path and/or an alternative source of regeneration media can be provided.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Christopher David William Jenkins
  • Patent number: 7781361
    Abstract: Disclosed are methods and systems for regenerating mercury loaded activated carbon honeycomb catalyst beds. In one embodiment, the regeneration methods and systems disclosed herein can enable a more efficient and economical operation of a honeycomb based mercury removal system by, for example, allowing the reuse of a particular substrate multiple times.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: August 24, 2010
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Youchun Shi
  • Patent number: 7758820
    Abstract: Apparatus and process is provided for increasing mixing in a regenerator. Streamlines of gas and some catalyst may form in a regenerator as a result of cyclone inlet horns positioned in the same direction. Overall mixing in the regenerator may decrease because of these streamlines. A dampening device may be used to interrupt the streamlines and increase mixing in the regenerator. The dampening device may be a baffle and direct streamlines from the outside of the chamber toward the center to collide and mix. In another embodiment, a dampening device may be a secondary disengager such as a T-disengager or an inverted can arrangement that may discharge gas and catalyst near the center of the upper chamber and interrupt the streamlines. In another embodiment, a dampening device may have swirl arms that redirect stream lines counter to the direction of flow.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 20, 2010
    Assignee: UOP LLC
    Inventors: Robert L. Mehlberg, Reza Mohammad Mostofi Ashtiani, Keith A. Couch
  • Patent number: 7754370
    Abstract: This invention provides a fuel cell catalyst material containing catalyst particles having a composition substantially represented by ATxNu??(1) wherein A contains Pt or Pt and at least one noble metal element selected from the group consisting of Ru, Pd, Au, and Ag, T contains at least one element selected from the group consisting of Fe, Co, Ni, Sn, Mn, Cr, V, Ti, Mo, Nb, Zr, W, Ta, and Hf, and atomic ratios x and u fall within the ranges 0?x?4 and 0.005?u?1, respectively.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Yoshihiko Nakano
  • Patent number: 7749762
    Abstract: A method for testing the performance of catalysts used for conversion of FCC regenerator gases comprises subjecting the catalyst simultaneously to a mixture of gases including an oxidizing gas and a reducing gas in more than one cycle in which the ratio of the oxidizing gas to the reducing gas varies over the time of the cycle. Test gases comprising O2, CO, CO2, steam, nitrogen-containing gases and sulfur-containing gases in which the ratio of O2 to CO varies over time for each cycle and in which the products of combustion formed during each cycle can be measured periodically over the cycle yields important data on the usefulness of the catalysts for treatment of regenerator flue gas.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: July 6, 2010
    Assignee: BASF Catalysts LLC
    Inventor: David Matheson Stockwell