Imide-containing Reactant Patents (Class 528/170)
  • Patent number: 6979721
    Abstract: This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly useful in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: December 27, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mary Ann B. Meador, Aryeh A. Frimer
  • Patent number: 6958381
    Abstract: A process for preparing polyamides comprises polymerizing starting monomers in the presence of from 2.3 to 10 mmol, based on 1 mol of carboxamide group of the polyamide, of a chain regulator containing a nitrile group and a functional group capable of forming a carboxamide group.
    Type: Grant
    Filed: November 22, 2001
    Date of Patent: October 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Helmut Winterling, Michael Fischer
  • Patent number: 6958192
    Abstract: The present invention relates generally to polyimides. It relates particularly to novel polyimides prepared from 2,3,3?,4?-biphenyltetracarboxylic dianhydride and aromatic diamines. These novel polyimides have low color, good solubility, high thermal emissivity, low solar absorptivity and high tensile strength.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: October 25, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr., John W. Connell, Kent A. Watson
  • Patent number: 6956098
    Abstract: The substrates of the present invention comprise a polyimide base polymer derived at least in part from collinear monomers together with crankshaft monomers. The resulting polyimide material has been found to provide advantageous properties, particularly for electronics type applications.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: October 18, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: John Donald Summers, Richard Frederich Sutton, Jr., Brian Carl Auman
  • Patent number: 6949619
    Abstract: A polyimide resin having phenolic hydroxyl radicals in its skeleton is prepared using a diamine bearing an aromatic ring having an amino radical attached thereto and another aromatic ring having a phenolic hydroxyl radical. The polyimide resin and a composition comprising the polyimide resin, an epoxy resin and a curing agent are suited for use as varnish, adhesive and adhesive film for which adhesion and heat resistance are required.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: September 27, 2005
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Nobuhiro Ichiroku, Masachika Yoshino, Hideki Akiba, Toshio Shiobara
  • Patent number: 6949296
    Abstract: The substrates of the present invention comprise a polyimide base polymer derived at least in part from non-rigid rod monomers together with optionally rigid rod monomers where the substrates are cured under low tension. The resulting polyimide materials have been found to provide advantageous properties (e.g. balanced molecular orientation, good dimensional stability, and flatness) particularly useful for electronics type applications.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 27, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Meredith L. Dunbar, James R. Edman
  • Patent number: 6949618
    Abstract: Provided are polyimide and a thin film thereof which have a three-dimensional structure and therefore are excellent in a mechanical strength and a heat resistance as compared with those of conventional linear polyimide. The polyimide is obtained from a salt of multifunctional amine represented by Formula (1): (wherein A represents a tetravalent organic group, and n represents an integer of 0 to 3) and tetracarboxylic diester represented by Formula (2): (wherein B represents a tetravalent organic group having 1 to 20 carbon atoms, and R1 and R2 each represent independently an alkyl group having 1 to 5 carbon atoms).
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: September 27, 2005
    Assignee: Chisso Corporation
    Inventor: Takashi Kato
  • Patent number: 6939940
    Abstract: Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: September 6, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Theodorous J. Dingemans, Erik S. Weiser, Terry L. St. Clair
  • Patent number: 6933047
    Abstract: A curable coating composition which is based on a hydroxyl-functional binder and a blocked polyisocyanate, comprising a suspended finely divided, wax-coated polyamide. This composition exhibits a number of superior properties including having a greatly improved abrasion value.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: August 23, 2005
    Assignee: Degussa AG
    Inventors: Joerg Hoehne, Paul-Ludwig Waterkap, Wolfgang Crhistoph
  • Patent number: 6930165
    Abstract: The invention concerns polyamides modified by a multifunctional compound. Finished articles formed from said polyamides or from compositions based on said polyamides exhibit excellent mechanical properties, and a very good surface appearance. The modified polyamide is obtained by mixing in melted form a polyamide and a polyamide macromolecular compound comprising star-shaped or H-shaped macromolecular chains.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 16, 2005
    Assignee: Rhodia Engineering Plastics S.r.l.
    Inventors: Nicolangelo Peduto, Franco Speroni, Haichun Zhang
  • Patent number: 6927274
    Abstract: Polyimide precursors contained in resin compositions of the present invention have a polymer structure unit represented by formula (1) below: wherein chemical structure A2 includes an alicyclic compound but not an aromatic compound such as a benzene ring so that they provide excellent light transmission over a wide wavelength range. The polyimide precursors are imidized at 7.5% or more and 36% or less so that they are less soluble in developing solutions and therefore are not dissolved in the developing solutions at unexposed parts. Thus, the resin compositions of the present invention can be used to form a resin film having a precise pattern by exposure and development.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: August 9, 2005
    Assignee: Sony Chemicals Corp.
    Inventors: Mamiko Nomura, Masatoshi Hasegawa, Junichi Ishii, Tadashi Akamatsu
  • Patent number: 6924348
    Abstract: A polyimide excelling in heat resistance, chemical resistance, water repellency, dielectric characteristics, electrical characteristics, and optical characteristics and a polyamide acid useful as the raw material therefor are provided. Specifically, a polyamide acid containing a chlorine atom and a fluorine atom and comprising a repeating unit represented by the following formula (1): (wherein X and X? independently denote a divalent organic group; Y and Y? independently denote a chlorine, bromine, or iodine atom; p and p? denote independently denote the number of fluorine atom {F in the formula (1)} bonded to the relevant benzene ring, representing an integer of 0-3; q and q? independently denote an integer of 0-3; and p+q total 3, and p?+q? total 3).
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: August 2, 2005
    Assignees: Nippon Shokubai Co., Ltd., NTT Advanced Technology Corporation
    Inventors: Kozo Tajiri, Masayoshi Kuwabara, Yasunori Okumura, Tohru Matsuura, Noriyoshi Yamada
  • Patent number: 6919418
    Abstract: Methods of reducing the amount of undesirable cyclic oligomer by-products in the production of polyetherimides are disclosed. The resulting polyetherimides have enhanced thermomechanical properties.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: July 19, 2005
    Inventors: Farid Fouad Khouri, Daniel Joseph Brunelle, Donald Scott Johnson
  • Patent number: 6919422
    Abstract: A polyimide composition and a process to prepare polyimide resins with reduced plate out and mold deposits is described. During resin molding operations the low plate out resins show a longer period of operation between cleaning of equipment leading to more efficient operation.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: July 19, 2005
    Assignee: General Electric Company
    Inventors: Robert R Gallucci, Roy Ray Odle, William A. Kernick, III, Mark Alan Sanner
  • Patent number: 6916898
    Abstract: A process of preparing a polyimide of the present invention comprises effecting an imidization reaction of a diamine and a tetracarboxylic dianhydride in a solvent containing 50 to 100% by weight of an equimolar composition of a nitrogen-containing cyclic compound indicated by chemical formula (1) below and a phenol indicated by chemical formula (2) below: in formula (1), X represents —CH2— or —N(CH3)—, and in formula (2), R1 and R2 may be the same as, or different from, each other and represent each any one of —H, —OH, —CH3, —C2H5, —C3H7, —C4H9, —C5H11, —C6H13, —C7H15, —C8H17, —C9H19, —C10H21, —OCH3, —O(C6H5), —NO2, —Cl, —Br and —F.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: July 12, 2005
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takashi Kuroki, Atsushi Shibuya, Shoji Tamai
  • Patent number: 6911519
    Abstract: A series of low melting and low viscosity phenylethynyl end-capped polyimides (PETIs) possessed of long term thermal and mechanical stability useful as films, melt coatings, adhesives, matrix and RTM resins and particular as coatings for optical fibers and phenylethynyl end-capped bismides blended with PETIs are disclosed. Processes for their production including: 1) modification of PETI-5 oligomer by molecular weight adjustments by blending with reactive low melting phenylethynyl end-capped imide monomers, 2) modification of the PETI-5 backbone structure with other diamine components, and 3) modification of the PETI-5 backbone with bulky fluorinated groups are also disclosed.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: June 28, 2005
    Assignee: University of Connecticut
    Inventors: Daniel A. Scola, Christopher D. Simone
  • Patent number: 6908685
    Abstract: The invention provides a polyimide film manufactured from a polyamic acid prepared from pyromellitic dianhydride in combination with 10 to 60 mol % of phenylenediamine and 40 to 90 mol % of 3,4?-oxydianiline, based on the overall diamine. The polyimide film, when used as a metal interconnect board substrate in flexible circuits, chip scale packages (CSP), ball grid arrays (BGA) or tape-automated bonding (TAB) tape by providing metal interconnects on the surface thereof, achieves a good balance between a high elastic modulus, a low thermal expansion coefficient, alkali etchability and film formability.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: June 21, 2005
    Assignees: E. I. du Pont de Nemours and Company, DuPont-Toray Co. Ltd.
    Inventors: Kenji Uhara, Kouichi Sawasaki, Naofumi Yasuda, Brian C. Auman, John D. Summers
  • Patent number: 6906165
    Abstract: The invention concerns copolyamides obtained by using multifunctional monomers. It consists in using a multifunctional monomer comprising at least three reactive functions and at least another multifunctional monomer, in amounts such that the terminal group concentrations are balanced. The copolyamides are particularly high viscosity copolyamides. The invention also concerns compositions based on said copolyamides.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: June 14, 2005
    Assignee: Rhodia Engineering Palstics S.R.L.
    Inventors: Giuseppe Di Silvestro, Franco Speroni, Cuiming Yuan, Haichun Zhang
  • Patent number: 6891067
    Abstract: The present invention provides an optical polyimide precursor for use in making a polyimide. The precursor is defined by the following formula: wherein X is Cl, Br, oxo-halide, or fully halogenated alkyl, and A is a divalent aromatic or halogenated aromatic moiety. The present invention provides a method of preparing a diamine compound for use as an optical polyimide precursor. The method includes the steps of dissolving 2-chloro-5-nitrobenzotrifluoride and a diol in N,N-dimethylacetamide to form a solution, adding potassium carbonate, tert-butylammonium chloride and copper powder to said solution and heating the resulting mixture, removing the copper, precipitating and recrystallizing a dinitro-compound resulting from heating the mixture, and dissolving the dinitro-compound and reducing the dinitro-compound to yield a diamine compound.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 10, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee, Eun-Ji Kim, Jung-Hee Kim, Woo-Hyeuk Jang
  • Patent number: 6887967
    Abstract: A thermosetting polyimide resin composition is provided which comprises a polyimide resin and an epoxy resin, which has excellent heat resistance, low dielectric constant and low dielectric loss tangent and also yields a cured article having good mechanical properties such as tensile strength and tensile elongation. Also, a process for producing a polyimide resin used in the polyimide resin composition is provided. The thermosetting polyimide resin composition comprises a polyimide resin (X), which has a carboxyl group and a linear hydrocarbon structure having a number-average molecular weight of 300 to 6,000, and an epoxy resin (Y).
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: May 3, 2005
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Eiju Ichinose, Yohzoh Yamashina, Hidenobu Ishikawa
  • Patent number: 6887580
    Abstract: An adhesive polyimide resin which comprises a siloxane polyimide resin obtained from (A) an aromatic tetracarboxylic dianhydride and (B) a diamine ingredient comprising (B1) a diamine having a phenolic hydroxyl group, carboxyl group, or vinyl group as a crosslinkable reactive group and (B2) a siloxanediamine and has a glass transition temperature of 50 to 250?C and a Young's modulus (storage modulus) at 250?C of 105 Pa or higher; and a laminate which comprises a substrate comprising a conductor layer and an insulating supporting layer having at least one polyimide resin layer and, disposed on a surface of the substrate, an adhesive layer comprising a layer of the adhesive polyimide resin. The adhesive polyimide resin and the laminate have satisfactory adhesion strength even after exposure to a high temperature of up to 270?C and further have excellent heat resistance in reflow ovens. They are hence suitable for use in the bonding of electronic parts.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: May 3, 2005
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventors: Kiwamu Tokuhisa, Akira Tokumitsu, Kazuaki Kaneko
  • Patent number: 6884865
    Abstract: The invention concerns copolyamides obtained by using multifunctional monomers. It consists in using at least one multifunctional monomer comprising at least three reactive functions and at least another multifunctional monomer, in amounts such that the terminal group concentrations are balanced. The copolyamides are more particularly high viscosity copolyamides. The invention also concerns compositions based on said copolyamides.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: April 26, 2005
    Assignee: Rhodia Engineering Plastics S.R.L.
    Inventors: Giuseppe Di Silvestro, Franco Speroni, Cuiming Yuan, Haichun Zhang
  • Patent number: 6881815
    Abstract: A method for the synthesis of poly(etherimide)s comprises the reaction of 4-halotetrahydrophthalic anhydride with an activating primary amine to yield an activated 4-halotetrahydrophthalimide. Activated 4-halotetrahydrophthalimide may then be aromatized and treated with the disodium salt of a bis(phenol) to yield an activated bisimide. The activated bisimide may then be directly treated with a diamine to yield poly(etherimide)s.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: April 19, 2005
    Assignee: General Electric Company
    Inventors: Roy Ray Odle, Thomas Link Guggenheim
  • Patent number: 6881477
    Abstract: A method is disclosed for producing a polyamide molding compound which includes the following method steps: addition and dissolving of m-xylylene diamine and dicarboxylic acids, which include adipic acid and aromatic dicarboxylic acids, with water and additives in a dissolving chamber and production of a mixture, the sum of the aromatic dicarboxylic acids added being 2 mol-percent to 15 mol-percent (in relation to the addition of dicarboxylic acids); transfer of the mixture into a reaction vessel and polycondensation of the mixture in this reaction vessel; granulation of the polycondensate; drying of the granulate. This method is distinguished in that the polycondensation is performed at a pressure of at most 10 bar and a temperature of 255° C. to 270° C., the pressure being built up while heating the reaction vessel to 255° C. to 270° C. and—immediately after the mixture has reached the maximum temperature—being reduced to atmospheric conditions while maintaining a temperature of 255° C. to 270° C.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: April 19, 2005
    Assignee: EMS-Chemie AG
    Inventors: Ulrich Presenz, Rosmarie Hartmann, Hans Rudolf Luck, Stephan Schmid
  • Patent number: 6878797
    Abstract: A process for producing alkali metal polymaleimide salts by alkaline hydrolysis of maleimide polymers prepared by polymerization of maleimide monomers in the presence of a metal oxide and alcohol initiator or a base. In particular, the process produces alkali metal polymaleimide salts with particular ratios of C—N and C—C connected maleimide-derived monomer units which are dependent on the particular initiator used to synthesize the maleimide polymer. The alkali metal polymaleimide salts, which have chelating and anti-scaling properties, are useful as chelating agents and detergent builders and as such are suitable biodegradable replacements for synthetic polymers and sodium polyaspartate.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: April 12, 2005
    Assignees: Board of Trustees of Michigan State University, Applied CarboChemicals
    Inventors: Kris A. Berglund, Parminder Agarwal, Qiuyue Yu, Adam Harant
  • Patent number: 6864348
    Abstract: Polyetherpolyamide elastomer showing a low water absorption, a high stress relaxation, and a high elastic recovery percentage of elongation is obtainable by polymerizing an aminocarboxylic acid compound and/or a lactam compound, a triblock polyetherdiamine compound having the following formula, and a dicarboxylic acid compound: [x is a value of 1 to 20, y is a value of 4 to 50, z is a value of 1 to 20].
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: March 8, 2005
    Assignee: UBE Industries, Ltd.
    Inventors: Hiroshi Okushita, Tadao Muramatsu, Teruaki Fujii
  • Patent number: 6861497
    Abstract: A polyimide is disclosed of the formula: CG1 and CG2 are independently electron-accepting and/or electron-donating groups; x is an integer from about 3 to about 3000; ODAH is any of a number of known dianhydride residues; ODAM is any of a number of known diamine residues; and m, n, o, and p cumulatively add to 1.0, with the sum of m and n ranging from about 0.05 to about 1.0, the sum of o and p ranging from about 0 to about 0.95, the sum of m and o being about 0.5 and the sum of n and p being about 0.5. In addition, a film structure comprising the polyimide and devices utilizing the film structure are disclosed.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: March 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Geoffrey A. Lindsay, Richard A. Hollins, Peter Zaras, Andrew J. Guenthner, Andrew P. Chafin, Mathew C. Davis, Stephen Fallis
  • Patent number: 6858700
    Abstract: Higher diamondoid derivatives capable of taking part in polymerization reactions are disclosed as well as intermediates to these derivatives, polymers formed from these derivatives and methods for preparing the polymers.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: February 22, 2005
    Assignee: Chervon U.S.A. Inc.
    Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
  • Patent number: 6852826
    Abstract: In a step of polymerizing polyamic acid by mixing tetracarboxylic acid dianhydride and diamine and polycondensating the tetracarboxylic acid dianhydride and diamine under the presence of a polymerization-use solvent, a tetracarboxylic acid dianhydride slurry in which a tetracarboxylic acid dianhydride is dispersed in a dispersion medium is used. According to this, it is possible to directly manufacture a polyamic acid solution having a high concentration of polyamic acid more than or equal to 10% by weight. Especially, even if a tetracarboxylic acid dianhydride having low solubility in the polymerization-use solvent, it is possible to effectively manufacture a polyamic acid solution having high solids content, by a simple process and in a short time.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 8, 2005
    Assignee: Kanera Corporation
    Inventors: Kan Fujihara, Kazuhiro Ono, Kiyokazu Akahori
  • Patent number: 6849706
    Abstract: Copolyetherimides comprise phthalimide structural units comprising both 3- and 4-linkages, wherein the designations 3-linkage and 4-linkage refer to the isomeric positions on the phthalimide ring in the totality of phthalimide-comprising structural units in the copolymer. The products have excellent properties, including high glass transition and heat distortion temperatures, high ductility and good melt flow properties, and low polydispersity.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventors: Daniel Joseph Brunelle, Havva Yagci Acar, Farid Fouad Khouri, William David Richards
  • Patent number: 6841651
    Abstract: The polyamide resin of the present invention is produced by polycondensation of a diamine component comprising 70 mol % or more of m-xylylenediamine and a dicarboxylic acid component comprising 70 mol % or more of a C4-C20 ?, ?-straight-chain aliphatic dicarboxylic acid in the presence of at least one phosphorus compound selected from the group consisting of phosphinic acid compounds and phosphonous acid compounds and in the presence of an alkali metal compound of a weak acid. The weak acid has a dissociation constant lower than a first dissociation constant of a dicarboxylic acid mainly constituting the polyamide resin. The polyamide resin satisfies the following requirements (A), (B) and (C): 14000?a?40000??(A) b?1.000??(B) 0.9930?b?1.1a2×10?11+3.2a×10?7?0.9980??(C) wherein a and b are as defined in the disclosure.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: January 11, 2005
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazunobu Maruo, Tomomichi Kanda, Koji Yamamoto
  • Patent number: 6842576
    Abstract: The present invention provides a polymer lightguide which has a waveguide layer comprising a polyimide having a repeating unit represented by general formula (I): wherein R represents a bivalent organic group.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: January 11, 2005
    Assignee: Nitto Denko Corporation
    Inventors: Kazunori Mune, Amane Mochizuki, Takami Hikita, Kenichi Tagawa
  • Patent number: 6838184
    Abstract: An aromatic polyimide film for producing an electro-conductive sealing element of a packaged semi-conductor device, has a thickness of 20 to 60 ?m, a moisture vapor transmission coefficient of 0.05 to 0.8 g/mm/m2·24 hrs, a water absorption ratio of 2.0% or less, and an elastic modulus in tension of 5,000 MPa or more, in which a surface of the polyimide film has been treated with reduced-pressure plasma discharge.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 4, 2005
    Assignee: Ube Industries, Ltd.
    Inventors: Takuji Takahashi, Toshihiko Anno, Kohji Narui, Shozo Katsuki
  • Patent number: 6835799
    Abstract: The invention relates to a randomly branched polyamide comprising at least units derived from: 1. AB monomers, 2. at least one compound I, being a carboxylic acid (Av) having a functionality v≧2 or an amine (Bw) having a functionality w≧2, 3. at least one compound II, being a carboxylic acid (Av) having a functionality v≧3 or an amine (Bw) having a functionality w≧3, compound II being a carboxylic acid if compound I is an amine or compound II being an amine if compound I is a carboxylic acid and the amounts of all units derived from carboxylic acids and amines in the polyamide satisfying conditions as mentioned in claim 1. The composition of the randomly branched polyamide is such that it cannot form a crosslinked polyamide (and thus no gels, either), in particular during the prepolymerization, the polymerization, the post-condensation, the processing and the storage of the randomly branched polyamide, and this at a variety of ambient factors, for instance at elevated temperature and pressure.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 28, 2004
    Assignee: DSM IP Assets B. V.
    Inventors: Atze J. Nijenhuis, René Aberson, Boudewijn J. R. Scholtens
  • Patent number: 6828408
    Abstract: An aromatic polyimide ester having a small coefficient of linear expansion, small water absorbing property, and excellent heat resistance. The aromatic polyimide ester comprising: a repeating unit represented by a following formula (I), a repeating unit represented by a following formula (II), (n represents 0 or 1) a repeating unit represented by a following formula (III), and a repeating unit represented by a following formula (IV), (-A- represents —O— or —CO—, and is located in para-position or meta position to imido group, and X represents direct coupling, —O—, —S—, or —SO2—) and the repeating units are mutually bonded with each other through ester-bonds.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Satoshi Okamoto, Manabu Hirakawa
  • Patent number: 6828409
    Abstract: A host-guest polymer system including a polymer with an isoimide group and an organic chromophore and capable of converting into a side-chain polymer system, a side-chain nonlinear optical polymer derived from the host-guest polymer system, and a method for synthesizing the side-chain nonlinear optical polymer are provided. The method for synthesizing the side-chain nonlinear optical polymer involves forming a nonlinear optical polymer film based on a host-guest system in which an organic chromophore having a reactive group capable of nucleophilic reaction with an isoimide group is dispersed in a matrix including a polymer with the isoimide group having the following formula: Next, the nonlinear optical film is poled at a first temperature in an electric field; and the organic chromophore is reacted with the polymer while poling at a second temperature which is higher than the first temperature, to synthesize the side-chain nonlinear optical polymer.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: December 7, 2004
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung Koo Park, Jung Yun Do, Jung Jin Ju, Suntak Park, Myung-Hyun Lee
  • Patent number: 6818731
    Abstract: A polyamide resin composition contains 100 parts by weight of (A) a polyamide resin with a melting point of 270° C. to 340° C.; 0.2 to 20 parts by weight of (B) a compound represented by Formula (I) where R1 and R2 are alkyl groups having at least 9 carbon atoms, and m and n are integers from 1 to 3; and 1 to 100 parts by weight of (C) a bromine-based flame retardant.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: November 16, 2004
    Assignees: Kuraray Co., Ltd., Asahi Denka Co., Ltd.
    Inventors: Hideharu Matsuoka, Hideaki Oka, Koichi Uchida, Masahide Tsuzuki, Koji Beppu
  • Patent number: 6812322
    Abstract: A process for the preparation of novel polyamides, the use of such polyamides for the production of fibers, sheets and moldings, and fibers, sheets and moldings obtainable from such polyamides, are provided.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: November 2, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Paul-Michael Bever, Ulrike Breiner, Bernd-Steffen von Bernstorff, Gerhard Conzelmann
  • Patent number: 6808818
    Abstract: A fusible polyimide showing a fusion endothermic peak in a differential scanning calorimeter has a recurring unit of the following formula (1): in which Ar1 is a mixture of residues of tetracarboxylic dianhydrides composed of 12-25 mol. & of a residue of pyromellitic dianhydride, 5-15 mol. % of a residue of 3,3′4,4′-benzophenonetetracarboxylic dianhydride, and a remaining mol. % of a residue of 3,3′,4,4′-biphenyltetracarboxylic dianhydride, and Ar2 is an aromatic diamine residue composed of 1,3-bis(4-aminophenoxy)benzene.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: October 26, 2004
    Assignee: Ube Industries, Ltd.
    Inventors: Hideki Ozawa, Shigeru Yamamoto
  • Patent number: 6797804
    Abstract: An antistatic molded resin article based on polyesteramide has a low resistivity even when a substantive amount of electrically conductive additive is not used. The molded article is prepared by copolymerizing (a) a cyclic amide and (b) linear ester selected from polyesterpolyol, polyesteretherpolyol or polycarbonatepolyol. The surface resistivity is less than 1013&OHgr;.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: September 28, 2004
    Assignee: DSM N.V.
    Inventor: Motoji Abe
  • Patent number: 6797344
    Abstract: New aromatic diamine derivatives and the preparation thereof are disclosed. The diamine derivatives of the present invention can be added to conventional polymerization reactions of tetracarboxylic acids or dianhydrides thereof and diamines to form new polyamic acids. After high-temperature baking, the polyamic acids are cyclized to form polyimides. These polyimides can be used as alignment film materials for liquid crystal display cell and have good alignment property and stability, and are effective in promoting pre-tilt angles.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 28, 2004
    Assignee: Eternal Chemical Co., Ltd.
    Inventors: Wen-Chung Chu, Shih-Chieh Yeh, Chia-Wen Chang
  • Patent number: 6797801
    Abstract: An oriented polyimide film of high strength and a production process therefor. The process basically comprises stretching a gelled film and then imidating the film. The gelled film is formed by introducing a polyamic acid solution into a condensation agent solution. The gelled film is swollen with a solvent at the time of stretching.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: September 28, 2004
    Assignee: Teijin Limited
    Inventors: Jiro Sadanobu, Rei Nishio, Susumu Honda, Tsutomu Nakamura
  • Patent number: 6790934
    Abstract: Aromatic polyethers are prepared by displacement polymerization reaction in the presence of a water-immiscible solvent with boiling point at atmospheric pressure of greater than 110° C. and a density ratio to water of greater than 1.1:1 at 20-25° C. The polyethers are purified by processes comprising aqueous extraction, or filtration, or a combination thereof.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 14, 2004
    Assignee: General Electric Company
    Inventors: Norman Enoch Johnson, Raul Eduardo Ayala, Thomas Joseph Fyvie, Amy Rene Freshour, David Winfield Woodruff, Peter David Phelps, Ganesh Kailasam, Paul Edward Howson, Elliott West Shanklin, Lioba Maria Kloppenburg, David Bruce Hall, Pradeep Jeevaji Nadkarni, Daniel Joseph Brunelle
  • Patent number: 6790930
    Abstract: The present invention provides a method for easily producing a high-molecular weight polyimide resin at high yield by drying and heating a mixture mixed by material monomers of polyimide.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: September 14, 2004
    Assignee: Kaneka Corporation
    Inventors: Takeshi Kikuchi, Hiroyuki Tsuji, Koji Okada, Hiroyuki Furutani, Koichiro Tanaka, Shoji Hara, Hitoshi Nojiri
  • Patent number: 6784279
    Abstract: The instant invention provides an aromatic polyamide composition for molding which is of superior rigidity, strength, toughness, dimensional stability, resistance to chemicals, external surface appearance and sliding characteristics in high-humidity, high-temperature environments, which has a low coefficient of linear expansion and which is of low warpage. In a representative composition, 5 to 170 parts by weight of wollastonite of a number average length of approximately 5 &mgr;m to approximately 180 &mgr;m and a number average diameter of approximately 0.1 &mgr;m to 15.00 &mgr;m and the average aspect ratio of which is greater than 3:1 is compounded with 100 parts by weight of semi-aromatic polyamide in which the quantity of aromatic monomer in the monomer component that forms the polyamide is greater than 20 mol % and the melting point of which is greater than 280° C.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: August 31, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Masahiro Nozaki, Reiko Koshida, Takeo Tasaka, Tadao Ushida
  • Patent number: 6784275
    Abstract: Disclosed is an active energy ray-curable polyimide resin composition which comprises a polymerizable polyimide resin (I) having an isocyanurate ring, an alicyclic structure, an imide ring and a (meth)acryloyl group and being capable of patterning with a dilute alkali aqueous solution.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: August 31, 2004
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Eiju Ichinose, Yohzoh Yamashina, Hidenobu Ishikawa
  • Patent number: 6784276
    Abstract: This invention is a highly concentrated stable solution of polyimide precursors (monomers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethyl alcohol. The concentrated polyimide precursor solution comprises effective amounts of at least one aromatic diamine, at least one aromatic dianhydride or a lower molecular weight alkyl ester of said dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and the lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: August 31, 2004
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventor: Chun-Hua Chuang
  • Patent number: 6780960
    Abstract: A method of making a solution of a polyimide from a diamine monomer and a dianhydride monomer is disclosed. A solution or slurry of one of the monomers in a solvent that boils at a temperature between about 80° C. and about 160° C. is prepared. The solution or slurry is heated to a temperature between about 80° C. and about 160° C. and the other monomer is slowly added to the solution or slurry. Polyamic acid that is formed quickly imidizes to form the polyimide.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: August 24, 2004
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Michael C. Hausladen, Jin-O Choi
  • Patent number: 6777526
    Abstract: A separating agent that serves as an optical resolution agent is composed of a novel, useful optically active polymer. The separating agent is obtained through anionic polymerization of a novel maleimide and serves to separate optically active compounds.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: August 17, 2004
    Assignee: Tosoh Corporation
    Inventors: Takumi Kagawa, Hideo Sakka
  • Patent number: 6777525
    Abstract: Polyimides having a desired combination of high thermo-oxidative stability, low moisture absorption and excellent chemical and corrosion resistance are prepared by reacting a mixture of compounds including (a) 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), (b) 3,4′-oxydianiline (3,4′-ODA), and (c) 5-norbornene-2,3-dicarboxylic anhydride (NA) in a high boiling, aprotic solvent to give 5 to 35% by weight of polyamic acid solution. The ratio of (a), (b), and (c) is selected to afford a family of polyimides having different molecular weights and properties. The mixture first forms a polyamic acid precursor. Upon heating at or above 300° C., the polyamic acids form polyimides, which are particularly suitable for use as a high temperature coating, adhesive, thin film, or composite matrix resin.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: August 17, 2004
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Ruth H. Pater