Material Contains A Group Iib Metal Atom (zn, Cd, Hg) Patents (Class 528/281)
  • Patent number: 10377863
    Abstract: A method of manufacturing polyimide particles includes combining a polyimide solution including a polyimide and an organic solvent with an aqueous solution including water in the presence of an emulsifying surfactant at a shear rate from 1,000 to 3,000 revolutions per minute to form an emulsion. The method further includes removing the organic solvent to form an aqueous polymer dispersion including polyimide particles, and recovering the polyimide particles. The polyimide particles have a spherical morphology and a volume based D10 diameter from 3 to 50 micrometers, a volume based D90 diameter from 3 to 80 micrometers, and a volume based D100 diameter from 3 to 100 micrometers.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 13, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Viswanathan Kalyanaraman, Hareesh Shamrao Deshpande, Ekrem Mehmet Morali
  • Patent number: 10266645
    Abstract: The present invention provides a copolymerized polyester resin which can produce an adhesive resin having an excellent color tone and an excellent durability when used for an adhesive to be applied to various uses. A copolymerized polyester resin, comprising, as constituting ingredients, a dicarboxylic acid ingredient containing 75 molar % or less of terephthalic acid and a diol ingredient containing two or more kinds of diols, characterized in that the copolymerized polyester resin satisfies the following (1) and (2): (1) A decrease in a reduced viscosity after the copolymerized polyester resin is subjected to a heat treatment in a nitrogen atmosphere at 275° C. for 2 hours is 0.20 dl/g or less; and (2) A color b value is 5 or less.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 23, 2019
    Assignee: TOYOBO CO., LTD.
    Inventors: Hideto Ohashi, Hideki Shimizu
  • Publication number: 20150148515
    Abstract: There is provided a polyester resin including: moieties of dicarboxylic acid components including terephthalic acid; and moieties of diol components including 5 to 60 mole % of isosorbide, 10 to 80 mole % of a cyclohexanedimethanol, and the balance of other diol compounds, wherein the polyester resin has an intrinsic viscosity of 0.5 to 1.
    Type: Application
    Filed: May 21, 2013
    Publication date: May 28, 2015
    Inventors: Ji-Hyun Kim, Yoo Jin Lee
  • Publication number: 20150148516
    Abstract: The present invention discloses new catalyst systems based on complexes of divalent metals supported by chelating phenoxy ligands for immortal ring-opening polymerisation of cyclic esters and cyclic carbonates.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Jean-Francois Carpentier, Yann Sarazin, Valentin Poirier, Marion Helou
  • Publication number: 20150141612
    Abstract: The present invention provides a polyester resin including: moieties of dicarboxylic acid components including terephthalic acid; and moieties of diol components including isosorbide, a cyclohexanedimethanol, and the balance of other diol compounds. The polyester resin contains a zinc-based catalyst and a phosphorus-based stabilizer. The present invention also provides a method for preparing the polyester resin. The method includes: esterifying diol components including isosorbide, a cyclohexanedimethanol, and the balance of other diol compounds, with dicarboxylic acid components including terephthalic acid in the presence of an esterification reaction catalyst including a zinc compound; adding a phosphorus-based stabilizer to the esterification reaction mixture at the time when the degree of esterification reaches at least 80%; and subjecting the esterification reaction product to polycondensation.
    Type: Application
    Filed: May 21, 2013
    Publication date: May 21, 2015
    Inventors: Yoo Jin Lee, Ji-Hyun Kim, Jong Ryang Kim
  • Patent number: 8921509
    Abstract: Provided is a composition with partially aromatic polyester polymers having an It.V. of at least 0.50 dL/g, produced in an ester exchange melt phase process, having from zero or greater than zero to less than 5 ppm titanium, from zero or greater than zero to less then 10 ppm germanium, and from zero or greater than zero to less than 20 ppm manganese.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Zhufang Liu, Jeff Scott Howell
  • Publication number: 20140364580
    Abstract: The invention provides a metal alkoxide complex of Formula (I), wherein X, M, R1, R2, R3, m, n, y and z are as defined in the Description. The invention also provides a catalyst composition comprising the metal alkoxide complex and a hydroxy-containing compound, wherein the molar ratio of the metal alkoxide complex to the hydroxy-containing compound is 1:01-1000. The invention also provides a production method of poly-?- caprolactone or polyactide, wherein an ?-caprolactone monomer or a lactide monomer is reacted in the presence of the metal alkoxide complex or catalyst composition to obtain poly-?-caprolactone or polylactide. The metal alkoxide complex and the catalyst composition thereof can be used to catalyze the synthesis of poly-?- caprolactone or polylactide with a high efficiency.
    Type: Application
    Filed: September 11, 2012
    Publication date: December 11, 2014
    Applicant: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Dongmei Cui, Xinli Liu, Bo Liu, Shihui Li, Dongtao Liu, Chunji Wu
  • Patent number: 8901271
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 6 mol % comonomer, using a mixed metal catalyst system and comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form PET and EG, wherein the catalyst system substantially consists of 70-160 ppm of Sb-compound, 20-70 ppm of Zn-compound, and 0.5-20 ppm of Ti-glycolate as active components (ppm metal based on PET). With this process that applies reduced amount of metal catalyst components PET can be obtained with high productivity, which polyester shows favorable color and optical clarity, also if recycling of EG is applied within the process.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: December 2, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Munif Al-Munif, Mummaneni Venkateswara Rao, Zahir Bashir, Suresh Padmanabhan
  • Publication number: 20140323683
    Abstract: A process for manufacturing defined functional lactic acid oligomers can include contacting lactide with at least one compound that is a transfer agent. Oligomers can be prepared according to the process.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 30, 2014
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Martine Slawinski, Marion Helou, Jeroen Wassenaar
  • Patent number: 8859713
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 30 mol % comonomer, using a catalyst system essentially consisting of antimony—(Sb), zinc—(Zn) and phosphorous—(P) compounds, comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form polyester and EG1 wherein the Sb- and P-compounds are added in step a) and the Zn-compound is added after step a). With this process PET can be obtained that shows favorable color and optical clarity, also if recycling of EG is applied in the process, and a relatively low rate of acetaldehyde regeneration during melt-processing.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 14, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mummaneni Venkateswara Rao, Munif Al-Munif, Zahir Bashir
  • Publication number: 20140228535
    Abstract: A method can include immortal ring-opening homopolymerisation of cyclic carbonates or cyclic esters in the presence of a catalytic system, or sequential two-step ring-opening block copolymerisation of one or more cyclic monomers selected from cyclic carbonates or cyclic esters in the presence of the catalytic system. The catalytic system can include a phenolate supported metallic complex. The catalytic system can also include an alcohol or a primary amine containing aliphatic and/or aromatic moieties. The alcohol or primary amine can be present in a molar ratio with respect to the metallic complex that is larger than 1.
    Type: Application
    Filed: August 31, 2012
    Publication date: August 14, 2014
    Inventors: Valentin Poirier, Jean-François Carpentier, Martine Slawinski, Yann Sarazin, Marion Helou
  • Patent number: 8697832
    Abstract: The invention relates to a process for preparing lactic acid polymers of highly crystallinity and molecular weight, the process comprising melt polymerization of a lactide to form prepolymers having active end groups followed by solid state polymerization. The polymerization is carried out in the presence of a catalyst complex comprising a lactide, an organic metal-oxo compound and a lactic acid oligomer. The residual lactide after the melt polymerization is removed by heating the reaction mixture in the temperature range of 98° C. to a temperature less than the melting point of the prepolymer. The metal to oligomer ratio in the catalyst complex is in the range of 0.1 to 10, preferably in the range of 0.5 to 5, more preferably in the range of 0.8 to 1.5.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: April 15, 2014
    Assignee: Indian Institute of Technology, Bombay
    Inventors: Hemant Nanavati, Vimal Katiyar
  • Patent number: 8530609
    Abstract: A process for removing metal species from a composition comprising contacting: a. an oligomer mixture stream comprising the monomers of a partially aromatic polyester polymer and at least one metal species, or b. a molten polyester polymer stream comprising partially aromatic polyester polymers and at least one metal species, with a non-catalytic porous material in the presence of hydrogen to produce a treated stream containing a reduced amount of at least one metal species. There are provided compositions comprising a partially aromatic polyester polymer having an It.V. of at least 0.50 produced in a direct esterification melt phase process, from greater than 0 to less than 50 ppm antimony, and less than 40 ppm cobalt, or produced in an ester exchange melt phase process, having from greater than zero to less than 5 ppm titanium and less than 10 ppm manganese.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: September 10, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Zhufang Liu, Jeff Scott Howell
  • Publication number: 20130158227
    Abstract: This invention relates to a process of preparing a catalyst for the production of polyethylene terephthalate and for the production of high molecular weight PET comprising: a) reacting boric acid and a zinc salt in a solvent comprising at least one glycol selected from ethylene glycol, propylene glycol, and butylene glycol thereby forming a precipitate; and b) isolating the precipitate. In addition, the use of the catalyst for the production of polyethylene terephthalate and for the production of high molecular weight PET is disclosed.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 20, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventor: SAUDI BASIC INDUSTRIES CORPORATION
  • Publication number: 20130144027
    Abstract: The present invention discloses a method for preparing polycarbonate-urethane) or poly(ester-urethane) without isocyanate
    Type: Application
    Filed: June 21, 2011
    Publication date: June 6, 2013
    Applicants: CENTER NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Sophie Guillaume, Marion Helou, Jean-François Carpentier, Martine Slawinski
  • Publication number: 20130018165
    Abstract: A method is disclosed herein for the preparation of polytrimethylene terephthalate with sustained-release crystallinity. The method reduces crystallization rate and crystallinity-saturation ratio of polytrimethylene terephthalate during spinning, through addition of a third monomer during the esterification reaction step. The third monomer acts as copolymerization component generating intermolecular steric hindrance; the identity of which selects from one or more as combinations of the following: trimellitic anhydride, non-para aromatic dicarboxylic acid, C4-C10 aliphatic dicarboxylic acid having branched chains or naphthenic group and C3-C10 aliphatic dihydric alcohol having branched chains or naphthenic group, the molar ratio of carboxyl to hydroxyl is 1:1.16˜1.85, with the third monomer constituting 0.5˜6.5% of the total weight of the beginning raw materials.
    Type: Application
    Filed: February 23, 2011
    Publication date: January 17, 2013
    Inventor: Shuchang Bian
  • Patent number: 8163841
    Abstract: Polyethylene naphthalate fibers that are characterized in that the fibers have a crystal volume of from 550 to 1,200 nm3 obtained by wide angle X-ray diffraction of the fiber and a degree of crystallization of from 30 to 60%. It is preferred that the fibers have a maximum peak diffraction angle of wide angle X-ray diffraction of from 25.5 to 27.0° and a melting point of from 285 to 315° C. The production method thereof is characterized in that a particular phosphorus compound is added to the polymer in a molten state, the spinning draft ratio after discharging from the spinneret is from 100 to 5,000, and the molten polymer immediately after discharging from the spinneret is allowed to pass through a heat-retaining spinning chimney at a temperature within ±50° C. of a temperature of the molten polymer, and is drawn.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 24, 2012
    Assignee: Teijin Fibers Limited
    Inventors: Shintaro Shimada, Fuyuki Terasaka
  • Patent number: 8158718
    Abstract: Polyethylene naphthalate fibers that are characterized in that the fibers have a crystal volume of from 100 to 200 nm3 obtained by wide angle X-ray diffraction of the fiber and a degree of crystallization of from 30 to 60%. It is preferred that the fibers have a maximum peak diffraction angle of wide angle X-ray diffraction of from 23.0 to 25.0°. The production method thereof is characterized in that a particular phosphorus compound is added to the polymer in a molten state, the spinning speed is from 4,000 to 8,000 m/min, and the molten polymer immediately after discharging from the spinneret is allowed to pass through a heated spinning chimney at a high temperature exceeding a temperature of the molten polymer by 50° C. or more, and is drawn.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 17, 2012
    Assignee: Teijin Fibers Limited
    Inventors: Shintaro Shimada, Fuyuki Terasaka
  • Publication number: 20120071625
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 30 mol % comonomer, using a catalyst system essentially consisting of antimony—(Sb), zinc—(Zn) and phosphorous—(P) compounds, comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form polyester and EG1 wherein the Sb- and P-compounds are added in step a) and the Zn-compound is added after step a). With this process PET can be obtained that shows favourable colour and optical clarity, also if recycling of EG is applied in the process, and a relatively low rate of acetaldehyde re-generation during melt-processing.
    Type: Application
    Filed: March 10, 2010
    Publication date: March 22, 2012
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Mummaneni Venkateswara Rao, Munif Al-Munif, Zahir Bashir
  • Publication number: 20100249363
    Abstract: The present invention relates to a process for preparing polyethylene naphthalate, comprising the steps of: esterifying 2,6-naphthalene dicarboxylic acid and ethylene glycol, or glycols using the two materials as major material to obtain prepolymer which comprises bis(beta-hydroxyethyl)naphthalate or low polymer as main material; and performing polycondensation reaction to thereby prepare polyethylene naphthalate. The process of the present invention has advantages of: enabling esterification with a low molar ratio of ethylene glycol to reduce reaction time, thereby increasing process efficiency; minimizing formation of side reaction products to improve properties; and preventing deterioration of the products by performing polycondensation at a low temperature to thereby obtain polyethylene naphthalate polymers of high quality.
    Type: Application
    Filed: October 30, 2008
    Publication date: September 30, 2010
    Applicant: HYOSUNG CORPORATION
    Inventors: Hyun-Soo Kim, Young-Gyo Choi, Woo-Sung Kim, Byung-Jun Song
  • Patent number: 7709593
    Abstract: Processes for feeding catalyst systems to a melt phase process for the manufacture of polyester polymers, and more particularly, to split catalyst solution feeds to the melt phase process to provide the target amount and ratio of catalyst metals.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: May 4, 2010
    Assignee: Eastman Chemical Company
    Inventor: Jason Christopher Jenkins
  • Publication number: 20100105859
    Abstract: The invention relates to a process for preparing lactic acid polymers of highly crystallinity and molecular weight, the process comprising melt polymerization of a lactide to form prepolymers having active end groups followed by solid state polymerization. The polymerization is carried out in the presence of a catalyst complex comprising a lactide, an organic metal-oxo compound and a lactic acid oligomer. The residual lactide after the melt polymerization is removed by heating the reaction mixture in the temperature range of 98° C. to a temperature less than the melting point of the prepolymer. The metal to oligomer ratio in the catalyst complex is in the range of 0.1 to 10, preferably in the range of 0.5 to 5, more preferably in the range of 0.8 to 1.
    Type: Application
    Filed: April 4, 2008
    Publication date: April 29, 2010
    Inventors: Hemant Nanavati, Vimal Katiyar
  • Patent number: 7678875
    Abstract: A method for producing a PC copolymer with improved productivity is provided. The PC copolymer has a specific structure and the method uses a diester diol-containing monomer as a raw material. The polycarbonate copolymer is produced by reacting a diester diol-containing monomer, a divalent phenol, and a carbonate precursor by interfacial polymerization, wherein the diester diol-containing monomer is a product of reaction between a hydroxybenzoic acid or an esterified product thereof and a polyalkylene glycol, wherein the esterification degree of hydroxyl groups of the polyalkylene glycol is 50 to 90 mol %.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: March 16, 2010
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koichi Suga, Yasuhiro Ishikawa
  • Patent number: 7655746
    Abstract: Polyesters whose polycondensation is catalyzed by titanium-containing catalysts and which are susceptible to acetaldehyde formation during polycondensation or subsequent molding operations are prepared with low finished acetaldehyde content and reduced acetaldehyde generation by adding an ammonium or amine salt of an oxyphosphorus-acid. Polyesters, especially polyethylene terephthalate, may be produced with high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: February 2, 2010
    Assignee: Eastman Chemical Company
    Inventor: Mary Therese Jernigan
  • Publication number: 20090281230
    Abstract: The invention pertains to low profile additives (“LPA”) comprising branched polymers having a weight average molecular weight (Mw) of at least about 20,000 grams/mole and a number average molecular weight (Mn) of at least about 3,000 grams/mole and methods for making the LPAs. The invention further concerns compositions comprising LPAs synthesized from one or more difunctional monomers and one or more branching agents. Also, disclosed are thermosettable resinous compositions and molded articles comprising the LPAs.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 12, 2009
    Applicant: Ashland Licensing and Intellectual Property LLC
    Inventors: Husam A.A. Rasoul, Dejan D. Andjelkovic, Dennis H. Fisher
  • Patent number: 7608652
    Abstract: The present invention relates to a catalyst composition for producing polyethylene terephthalate from terephthalic acid and ethylene glycol, comprising: (i) an antimony compound, being present such that the elemental antimony is in a range of about 15 ppm to less than 150 ppm; (ii) a zinc compound, being present such that the elemental zinc is in a range of about 40 to about 160 ppm; as well as a process for the preparation thereof.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: October 27, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: Zahir Bashir, Jamil Siddiqui, Venkatanathan Sampath, Khalid Al-Luhaidan
  • Patent number: 7528219
    Abstract: The present invention is a method for efficiently incorporating a nitrogen containing methine light absorber into a polyester resin. The method includes forming a reaction mixture comprising combining a diol component, a diacid component selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, and mixtures thereof, an antimony containing compound, a phosphorus containing compound, a metal containing compound, and a nitrogen containing methine light absorber. The reaction mixture is polymerized in a polycondensation reaction system. In another embodiment the light absorber is added while the reaction products of one reactor are being transferred to the next reactor in the polycondensation reaction system. The present invention is also directed articles made from the polyester resin.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 5, 2009
    Assignee: Eastman Chemical Company
    Inventors: Max Allen Weaver, Jason Clay Pearson, Dale Milton Blakely, Frederick Leslie Colhoun
  • Publication number: 20080246192
    Abstract: A polyester composition comprising a reaction product of: 65-94.5 weight percent of a polyester having a weight average molecular weight of greater than or equal to 70,000 g/mol, of the formula wherein each T is a C6-10 aromatic group derived from a dicarboxylic acid and D is a C2-4 aliphatic group derived from a dihydroxy compound; 5-30 weight percent of an impact modifier copolymer comprising units derived from a C2-20 olefin and units derived from a glycidyl(meth)acrylate; and 0.5-5 weight percent of a particulate fluoropolymer encapsulated by a copolymer having a Tg of greater 10° C. and comprising units derived from a monovinyl aromatic monomer and units derived from a C3-6 monovinylic monomer; and wherein the composition has less than 70 weight percent of a polyester derived from a dicarboxylic acid and an aliphatic diol selected from the group consisting of 1,3-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanediol, and 1,4-cyclohexanedimethanol.
    Type: Application
    Filed: April 6, 2007
    Publication date: October 9, 2008
    Inventors: Sung Dug Kim, Subir Debnath
  • Patent number: 7332562
    Abstract: The present invention relates to a biodegradable copolyester of high molecular weight and narrow molecular weight distribution. The copolyester has a Mw of 100,000-600,000 g/mol, and a molecular weight distribution of 1.2-3.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 19, 2008
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Wei Chen, Guixiang Zhu, Xirong Chen, Jinglan Lu, Yanxia Zhang, Yifan Yan, Wei Zhang
  • Publication number: 20080033084
    Abstract: The present invention relates to a catalyst composition for producing polyethylene terephthalate from terephthalic acid and ethylene glycol, comprising: (i) an antimony compound, being present such that the elemental antimony is in a range of about 15 ppm to less than 150 ppm; (ii) a zinc compound, being present such that the elemental zinc is in a range of about 40 to about 160 ppm; as well as a process for the preparation thereof.
    Type: Application
    Filed: February 10, 2005
    Publication date: February 7, 2008
    Inventors: Zahir Bashir, Jamil Siddiqui, Venkatanathan Sampath, Khalid AL- Luhaidan
  • Patent number: 7282555
    Abstract: The present invention is a method for efficiently incorporating a nitrogen containing methine light absorber into a polyester resin. The method includes forming a reaction mixture comprising combining a diol component, a diacid component selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, and mixtures thereof, an antimony containing compound, a phosphorus containing compound, a metal containing compound, and a nitrogen containing methine light absorber. The reaction mixture is polymerized in a polycondensation reaction system. In another embodiment the light absorber is added while the reaction products of one reactor are being transferred to the next reactor in the polycondensation reaction system. The present invention is also directed articles made from the polyester resin.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: October 16, 2007
    Assignee: Eastman Chemical Company
    Inventors: Max Allen Weaver, Jason Clay Pearson, Dale Milton Blakely, Frederick Leslie Colhoun
  • Patent number: 7241855
    Abstract: A method is described for the manufacture of polyesters of aromatic dicarboxylic acids with aliphatic and/or cycloaliphatic dials, in which an aromatic dicarboxylic acid in the presence of a monocarboxylic acid or a mixture of a monocarboxylic acid present in a saturated solution with water or another suitable solvent is converted with an aliphatic or cycloaliphatic dial to a dicarboxylic acid alkanediolestercarboxylate and/or its oligomers, which are polycondensed in further process steps to the polyester.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: July 10, 2007
    Assignee: Zimmer Aktiengesellschaft
    Inventors: Stefan Deiss, Michael Reisen, Karl-Heinz Heldmann, Eckhard Seidel
  • Patent number: 7129301
    Abstract: A method for preparing a biodegradable copolyester includes: (a) optionally preparing an aromatic prepolymer by reacting a first aromatic dicarboxylic compound with a first aliphatic glycol; (b) reacting the aromatic prepolymer with a second aromatic dicarboxylic compound and a second aliphatic glycol so as to form a first reaction product; (c) reacting the first reaction product with an aliphatic dicarboxylic compound so as to form a second reaction product; and (d) performing polycondensation of the second reaction product.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: October 31, 2006
    Assignee: Far Eastern Textile Ltd.
    Inventors: Ru-Yu Wu, Chih-Wei Chu, Li-Ling Chang, Yi-Hsuan Tang, Ping-Sheng Lai
  • Patent number: 7060778
    Abstract: Ytterbium(III) acetylacetonate is used as a catalyst for the preparation of aliphatic oligocarbonate polyols by transesterification of at least one organic carbonate with at least one aliphatic polyol.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: June 13, 2006
    Assignee: Bayer Materialscience AG
    Inventor: Steffen Hofacker
  • Patent number: 7049390
    Abstract: A melt polymerization process for the preparation of poly(1,3-propylene-co-isosorbide) terephthalate (3GIT), new 3GITs and products made from the 3GITs. The process comprises (a) providing a mixture comprising terephthalic acid or its alkyl ester, 1,3-propanediol and isosorbide in a molar ratio of diols to terephthalic acid or its alkyl ester of from about 1.1:1 to about 1.6:1 and a molar ratio of 1,3-propanediol to isosorbide of from about 2:1 to about 10:1; (b) reacting the mixture in an inert atmosphere at a temperature of about 180 to about 245° C., with concurrent removal of a distillate comprising at least 80% of the water or alkanol volatile reaction product, wherein the distillate contains less than about 5 weight % 1,3-propanediol and less than 1 weight % isosorbide; and (c) continuing the reaction in the presence of a polycondensation catalyst at a pressure of about 0.25 to about 2 mm Hg and about 245 to about 260° C.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: May 23, 2006
    Assignee: E. I.du Pont de Nemours and Company
    Inventors: Douglas J. Adelman, Robin N. Greene, Donald E. Putzig
  • Patent number: 7048995
    Abstract: A polyester resin produced by polycondensing a dicarboxylic acid component containing an aromatic dicarboxylic acid or its ester-forming derivative as the main component and a diol component containing ethylene glycol as the main component in the presence of at least an antimony compound and a phosphorus compound, via an esterification reaction or an ester exchange reaction, which is characterized in that the amount of antimony eluted when immersed in hot water of 95° C. for 60 minutes in the form of particles having a number average particle weight of 24 mg, is not more than 1 ?g per 1 g of the polyester resin, as antimony atoms (Sb).
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: May 23, 2006
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yoshihiro Fujimori, Kiyotoshi Fujioka, Masahiro Nukui, Yutaka Yatsugi, Kazuya Nakamichi, Noboru Satou, Toshio Kambe, Hirotsugu Niwa
  • Patent number: 7026434
    Abstract: A composition and a process for producing the composition are disclosed. The composition comprises (1) repeat units derived from a carbonyl compound and a glycol and (2) one or more ultrafine metal oxides. The process can comprise (1) contacting, in the presence of a catalyst and optionally one or more ultrafine metal oxides, a carbonyl compound such as dicarboxylic acid with a glycol under a condition sufficient to produce polyester wherein the glycol can be pretreated with a metal oxide or (2) incorporating an ultrafine metal oxide into or onto polyester. Also disclosed is a process for substantially removing, or reducing the content of, an aldehyde in a glycol which comprises contacting the glycol with at least one metal oxide.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: April 11, 2006
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Donald Edward Putzig
  • Patent number: 6977282
    Abstract: A process for making dicyclopentadiene (DCPD)-containing polyesters is disclosed. The process comprises reacting 2-methyl-1,3-propanediol with maleic anhydride to form an acid terminated prepolymer and then reacting the prepolymer with a low grade DCPD to form DCPD-containing polyesters. The reaction of the prepolymer with DCPD is catalyzed by a transition metal triflate catalyst.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 20, 2005
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Lau S. Yang
  • Patent number: 6858701
    Abstract: A wholly aromatic polyester carbonate having a good color and excellent heat resistant stability. This polymer had an extremely low alkali metal content of 10 ppm or less. This polymer is advantageously produced by reacting an aromatic dicarboxylic acid, aromatic diol and diaryl carbonate in a specific molar ratio in the presence of a pyridine-based compound as a catalyst.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: February 22, 2005
    Assignee: Teijin Limited
    Inventors: Hiroshi Sakurai, Toyoaki Ishiwata, Takanori Miyoshi, Shunichi Matsumura
  • Patent number: 6855797
    Abstract: A process that can be used as catalyst in esterification, transesterification or polycondensation is disclosed, which comprises a stable solution comprising (a) titanium in the form of a titanium ?-hydroxycarboxylic acid or its salt, (b) a C1-C6 carboxylic acid, and (c) zinc in the form of a water-soluble zinc salt, and (d) water. Also disclosed is an esterification, transesterification or polycondensation process, which comprises contacting, in the presence of the solution process, an organic acid or its ester or its salt with an alcohol, optionally in the presence of a phosphorus compound, an organic or inorganic toning agent such as cobalt acetate, or combinations thereof.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: February 15, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Donald Edward Putzig, Edward Francis McBride, Clive Alexander Hamilton, Andrea Clare Smith
  • Patent number: 6828410
    Abstract: Poly(1,4-cyclohexanedicarboxylate)s, especially poly(1,4-cyclohexanedimethylene-1,4-cyclohexanedicarboxylate), are prepared from at least one relatively non-volatile diol, such as 1,4-cyclohexanedimethanol, and cyclohexane-1,4-dicarboxylic acid by an esterification process in the presence of a catalyst, at a maximum temperature of about 260°. In one embodiment the procedure employs a two-step process, the second of which may be performed in the melt or in the solid state. A volatile diol such as ethylene glycol may also be present.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: December 7, 2004
    Assignee: General Electric Company
    Inventors: Daniel Joseph Brunelle, Corrado Berti, Annamaria Celli, Martino Colonna, Maurizio Fiorini, Elisabetta Marianucci, Massimo Messori, Francesco Pilati, Laura Sisti, Paola Marchese
  • Patent number: 6780962
    Abstract: Described are methacrylate or acrylate binders e.g. obtainable by the steps of (i) generating OH-precursors from at least one aromatic polyester, and (ii) reacting said OH-precursors of step (i) with methacrylic acid and/or acrylic acid to form a respective ester, whereby step (i) comprises reacting an aromatic polyester, or a mixture of aromatic polyesters with at least one polyol and/or at least one aminopolyol to generate hydroxy terminated oligomers. Optionally, a modified product can be obtained by performing a further reaction in step (i), namely by reacting said hydroxy terminated oligomer with at least one polycarboxylic acid and/or at least one polycarboxylic anhydride to generate said hydroxy terminated binder precursor oligomer.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: August 24, 2004
    Assignee: Sika Schweiz AG
    Inventors: Dally Moya, Ria De Cooman, Werner Meyer
  • Patent number: 6774204
    Abstract: A composition and a process for producing the composition are disclosed. The composition comprises (1) repeat units derived from a carbonyl compound and a glycol and (2) one or more ultrafine metal oxides. The process can comprise (1) contacting, in the presence of a catalyst and optionally one or more ultrafine metal oxides, a carbonyl compound such as dicarboxylic acid with a glycol under a condition sufficient to produce polyester wherein the glycol can be pretreated with a metal oxide or (2) incorporating an ultrafine metal oxide into or onto polyester. Also disclosed is a process for substantially removing, or reducing the content of, an aldehyde in a glycol which comprises contacting the glycol with at least one metal oxide.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: August 10, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Donald Edward Putzig
  • Patent number: 6706396
    Abstract: The present invention provides processes for producing certain very low inherent viscosity polyesters. Also provided are the low inherent viscosity polyesters in discrete particulate form, and processes for producing the particulate polyesters. The discrete particulate materials are desirable for use in further processes.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: March 16, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Richard Allen Hayes, Gregory W. Hoffmann
  • Patent number: 6703474
    Abstract: A polyester resin produced by polycondensing a dicarboxylic acid component containing an aromatic dicarboxylic acid or its ester-forming derivative as the main component and a diol component containing ethylene glycol as the main component in the presence of at least an antimony compound and a phosphorus compound, via an esterification reaction or an ester exchange reaction, which is characterized in that the amount of antimony eluted when immersed in hot water of 95° C. for 60 minutes in the form of particles having a number average particle weight of 24 mg, is not more than 1 &mgr;g per 1 g of the polyester resin, as antimony atoms (Sb).
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: March 9, 2004
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yoshihiro Fujimori, Kiyotoshi Fujioka, Masahiro Nukui, Yutaka Yatsugi, Kazuya Nakamichi, Noboru Satou
  • Patent number: 6699545
    Abstract: This invention concerns a method for increasing the polymerization rate of polyester polymers in the solid state by adding a catalytic amount of zinc p-toluenesulfonate to a polyester polymer melt that is essentially free of antimony and germanium, before solid state polymerization.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: March 2, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Anju Parthasarathy
  • Patent number: 6663961
    Abstract: This invention is related to a process for preparing polyester polymers using a composite catalyst comprises the steps of 1) esterifying naphthalene dicarboxylic acid or a dicarboxylic acids containing NDCA or ester derivatives thereof, with ethylene glycol or glycols containing ethylene glycol or derivatives thereof to produce esterified compounds or its low molecular weight polymers; and then 2) continuously polycondensing the obtained esterification product to produce polyester polymers; and wherein the process includes using a composite polymerization catalyst which was prepared by reacting titanium compounds and cobalt compounds in the solution containing at least one alcohol. The process yields high quality polyester polymers having a good color and excellent physical properties. The process can considerably reduce both the esterification time and the polycondensation time.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: December 16, 2003
    Assignees: Oil Corporation, Korea Institute of Science and Technology
    Inventors: Hyun Nam Cho, Sang Ho Bae, Il Seok Choi
  • Patent number: 6657044
    Abstract: An improved process for the polymerization of polytrimethylene terephthalate by esterification of terephthalic acid or dimethylterephthalate with 1,3-propanediol (PDO), precondensation of the esterification product to produce a precondensation product, and polycondensation of the precondensation product to produce polytrimethylene terephthalate wherein excess PDO is removed from the esterification and/or polycondensation stages and PDO vapor is separated from the high boiling fraction (solid byproduct). The improvement comprises: (a) heating the solid byproduct in the presence of about 5 ppm to about 5000 ppm, based on metal, of a metal catalyst selected from the group consisting of one or more 3rd, 4th, or 5th row metal compounds from Groups 3-12 and Groups 14-15 of the Periodic Table (IUPAC 1989) at a temperature of from about 100° C. to about 240° C.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: December 2, 2003
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Kathleen Suzanne Kiibler, Wen Tzung Tang
  • Patent number: 6657036
    Abstract: The invention relates to polycondensation resins which are prepared by polycondensation of compounds having a low molecular weight and separation of small molecules in the presence of at least one hetergeneous catalyst. The invention also relates to polyaddition resins which are prepared by polyaddition in the presence of at least one heterogeneous catalyst. The invention further relates to the use of said polycondensation resins and polyaddition resins for the preparation of moulded parts, adhesives and coating materials.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: December 2, 2003
    Assignee: BASF Coatings AG
    Inventors: Werner-Alfons Jung, Heinz-Peter Rink, Eberhard Fuchs, Wolfgang Straehle
  • Patent number: RE40571
    Abstract: The present invention provides a catalyst for polyester production capable of producing a polyester with high catalytic activity, a process for producing a polyester using the catalyst and a polyester produced thereby. The catalyst comprises a solid titanium compound obtained by dehydro-drying a hydrolyzate obtained by hydrolysis of a titanium halide and which has a molar ratio (OH/Ti) of a hydroxyl group (OH) to titanium (Ti) exceeding 0.09 and less than 4. In the process, the polyester is obtained by polycondensing an aromatic dicarboxylic acid, or an ester-forming derivative thereof, and an aliphatic diol, or ester-forming derivative thereof, in the presence of the catalyst. The resulting polyester has excellent transparency and tint, a titanium content of 1 to 100 ppm, a magnesium content of 1 to 200 ppm and a magnesium to titanium weight ratio of not less than 0.01.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: November 11, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takeshi Ohmatsuzawa, Fujito Ehara, Hideshi Hori, Kazuo Toyota, Kenzaburou Fukutani, Junichi Imuta, Akiyoshi Shimizu, Takayuki Onogi, Seiji Noda, Masayuki Sakai, Shoji Hiraoka, Koji Nakamachi, Michio Tsugawa, Satoru Miyazoe