Material Contains A Group Iib Metal Atom (zn, Cd, Hg) Patents (Class 528/281)
  • Patent number: 6649731
    Abstract: By the present invention, there are provided a catalyst for polyester preparation, which comprises a solid titanium compound containing titanium, oxygen, carbon and hydrogen and having a Ti—O bond and which has a maximum solubility in ethylene glycol, as measured when the catalyst is dissolved in ethylene glycol under heating at 150° C., of not less than 3,000 ppm in terms of a titanium atom, a catalyst for polyester preparation, which comprises a titanium-containing solution wherein a contact product of a hydrolyzate of a titanium halide or a hydrolyzate of a titanium alkoxide with a polyhydric alcohol is dissolved in ethylene glycol in an amount of 3,000 to 100,000 ppm in terms of a titanium atom, a process for preparing a polyester using the catalyst, and a polyester prepared by the process.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 18, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hideshi Hori, Fujito Ehara, Akiyoshi Shimizu, Nobumasa Mukai, Shoji Hiraoka
  • Patent number: 6610796
    Abstract: Disclosed is a flame retardant polybutyleneterephthalate resin prepared be copolymerizing a phosphorus-based flame retardant represented by the following formula I and a butyleneterephthalate unit: wherein R1 and R2 are different or the same and are methyl or butyl including a hydroxyl group.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: August 26, 2003
    Assignee: Kolon Industries Inc.
    Inventors: Young-Ik Seo, Chung-Seock Kang, Tae-Gun Choi, Jun-Myoung Song
  • Patent number: 6582818
    Abstract: The invention relates to fibers, particularly binder fibers, made from polyesters and the polyesters themselves. The polyesters are the product of a reaction between a glycol component and a dicarboxylic acid component where the glycol component contains at least 50 mole % of a four carbon diol, such as 1,4-butanediol, or a six carbon diol, such as 1,6-hexanediol or a mixture of a four carbon and six carbon diol. Typically, the polyesters of the invention are semicrystalline and/or crystalline and have a specific melting point ranging from about 140 to about 185° C. The polyesters of the invention may be formed into a variety of products, especially binder fibers for nonwoven fabrics, textile/industrial yarns and fabrics, composites and other molded articles.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: June 24, 2003
    Assignee: Eastman Chemical Company
    Inventors: William A. Haile, Leron R. Dean, Richard L. McConnell, Kishan C. Khemani
  • Patent number: 6551675
    Abstract: A manufacturing method of the copolyester containing 2,6-ethylene naphthalate unit (EN) by using 2,6-naphthalenedicarboxylic acid (NDA), purified terephthalic acid (PTA), and ethylene glycol (EG) to proceed with esterification or by using dimethyl 2,6-naphthalenedicarboxylate (NDC), dimethyl terephthalate (DMT), EG, and transesterification catalyst to proceed with transesterification reaction or by PTA process. While the esterification reaction reaches 85˜98 percent of esterification ratio, NDC, EG, and transesterification catalyst are added to proceed with transesterification reaction. The monomer obtained from previous procedure is added with polymerization catalyst thereafter to proceed with polycondensation reaction to produce copolyester of which the viscosity is increased through solid state polymerization. Then, the copolyester is ejected to be blow-molded so as to produce the one-way bottle which can meet the requirement of pasteurization.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: April 22, 2003
    Assignee: Nan Ya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Patent number: 6544611
    Abstract: The present invention improves the effectiveness of the oxygen scavenging composition and maintains an excellent balance in the color properties of the polymer. The present invention relates to an improved oxygen scavenging PET based copolymer comprising from about 10 to about 120 ppm cobalt based on the PET polymer, and from about 15 to about 150 ppm zinc based on the PET polymer. The present invention also comprises a process for preparing a PET based oxygen scavenging copolymer, comprising the steps of: a) polymerizing a PET based polymer; b) adding Zn, Co, and an oxygen scavenging compound during said polymerizing step; c) copolymerizing said oxygen scavenging compound with said PET based polymer to form a copolymer; and d) extruding said copolymer.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: April 8, 2003
    Assignee: Arteva North America S.A.R.L.
    Inventors: David Anthony Schiraldi, Douglas John Sekelik, Brad Lee Smith
  • Patent number: 6528579
    Abstract: The invention relates to a process for the preparation of polyesters of a glycol and a dicarboxylic acid which comprises the following steps: a) introducing a feedstock comprising one or more glycols and one or more dicarboxylic acids or monoalcohol esters thereof into a reactor vessel, b) heating the feedstock to an elevated temperature to cause the glycols and the acids or monoalcohol esters thereof to polycondense into a polyester, c) removing all of the polyester from the reactor vessel, wherein step b) is carried out in the absence of a preformed polyester (“zero heel” process). A condensation catalyst is added in step a) or b) or both.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: March 4, 2003
    Assignee: Shell Oil Company
    Inventors: Kevin Dale Allen, Emery Don Johnson, Cecilia Zuqi Tse, Samuel Martin Moats
  • Publication number: 20030039776
    Abstract: A manufacturing method of the copolyester containing 2,6-ethylene naphthalate unit (EN) by using 2,6-naphthalenedicarboxylic acid (NDA), purified terephthalic acid (PTA), and ethylene glycol (EG) to proceed with esterification or by using dimethyl 2,6-naphthalenedicarboxylate (NDC), dimethyl terephthalate (DMT), EG, and transesterification catalyst to proceed with transesterification reaction or by PTA process.
    Type: Application
    Filed: May 14, 2001
    Publication date: February 27, 2003
    Inventor: Zo-Chun Jen
  • Publication number: 20030027975
    Abstract: Disclosed is a method for preparing saturated polyester used in various molded products, such as films, synthetic fibers, vessels and housings. In particular, the method improves mechanical properties, including tensile strength or impact resistance, of saturated polyester. In DMT method or TPA method, the saturated polyester is synthesized through transesterification or esterification and polycondensation, in which metal compounds, such as metal acetate compounds, metal hydroxides, and metal oxides, are added in the larger amounts upon synthesis, and thus crystalline internal grains are formed, thereby improving the mechanical properties. As such, the metal compound can be used alone or in combination with a phosphorous-based compound.
    Type: Application
    Filed: July 30, 2001
    Publication date: February 6, 2003
    Applicant: Saehan Industries Incorporation
    Inventor: Deog Jae Jo
  • Patent number: 6472500
    Abstract: An improved process for the preparation of high molecular weight, linear polyester resins comprises reacting an aromatic dicarboxylic acid with an excess of an alkane diol under conditions effective to reach the clearing point of the reaction; pre-condensing the cleared reaction mixture under conditions effective to produce oligomers having an intrinsic viscosity measured in 60/40 phenol/1,1,2,2-tetrachloroethane at 25° C. of less than about 0.70 deciliters/gram and a carboxylic acid end group level of less than or equal to about 100 milliequivalents per kilogram; and polycondensing the oligomer under conditions effective to produce a linear polyester resin having an intrinsic viscosity less than or equal to about 2.0 dl/g as measured in 60/40 phenol/1,1,2,2-tetrachloroethane by weight at 25° C. and a carboxylic acid end group level of about 10 to about 40 milliequivalents per kilogram.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: October 29, 2002
    Assignee: General Electric Company
    Inventors: Sandeep Dhawan, Gary Smith
  • Patent number: 6437088
    Abstract: A process for producing a polyester. The process comprises polymerizing a polymerization mixture comprising (i) a carbonyl compound or an oligomer of a carbonyl compound and (ii) a glycol, in the presence of a titanium catalyst composition, to produce the polyester, wherein a coated titanium dioxide comprising a titanium dioxide and a coat is added before or during the polymerizing.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: August 20, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jiwen F. Duan
  • Patent number: 6399716
    Abstract: An aromatic group containing copolyester resin composition which has good biodegradability and physical properties, wherein; (i) 0.1 wt % to 30 wt % of an aliphatic prepolymers having number average molecular weight of from 300 to 30,000; (ii) one or a plurality of aromatic dicarboxylic acid (or an acid anhydride thereof which containing aromatic group in the molecule; (iii) one or a plurality of aliphatic (including cyclic type) dicarboxylic acid (or an acid anhydride thereof); and (iv) one or a plurality of aliphatic (including cyclic type) glycol, wherein the copolyester resin has number average molecular weight of from 30,000 to 90,000, weight average molecular weight of from 100,000 to 600,000, melting point of from 70° C. to 150° C., and melt index of from 0.1 to 50 g/10min. (190° C., 2,160 g), and the process for preparing and/or producing the same.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: June 4, 2002
    Assignee: IRE Chemical Ltd.
    Inventors: Hyun Soo Chung, Jae Wang Lee, Dong Hoon Kim, Do Youn Kim, Suok Woo Lee
  • Patent number: 6350849
    Abstract: The production is described of unsaturated polyesters, which exclusively contain maleate groups in their main chain, by the ring-opening polymerization of epoxides, such as glycidyl ethers, glycidyl esters and olefine epoxides, with &agr;,&bgr;-unsaturated anhydrides, preferably such as maleic anhydride, both on their own and in admixture with other cyclic anydrides, in the presence of a Zn2+ carboxylate. The polyesters which are thus produced are characterized by high molecular weights and a narrow molecular weight distribution. Polymerization can be effected between 50 and 120° C., but is preferably effected between 60 and 90° C., either in the melt or in a solvent. Unsaturated reactive thinners, which after the addition of suitable radical initiators react thermally or photochemically with the polyesters to form lacquers, cast parts or fiber-reinforced composite materials, can also be employed as solvents.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: February 26, 2002
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Rainer B. Frings, Gerwald F. Grahe, Shinichi Nonaka
  • Patent number: 6346070
    Abstract: The present invention provides a catalyst for polyester production capable of producing a polyester with high catalytic activity and a process for producing a polyester using the catalyst. The catalyst for polyester production comprises a solid titanium compound which is obtained by dehydro-drying a hydrolyzate obtained by hydrolysis of a titanium halide and which has a molar ratio (OH/Ti) of a hydroxyl group (OH) to titanium (Ti) exceeding 0.09 and less than 4. The present invention also provides a method to obtain a polyester having a small increase of the acetaldehyde content during the molding. This method comprises bringing a polyester, which is obtained by the use of a titanium compound catalyst and in which the reaction has been completed, into contact with a phosphoric ester aqueous solution or the like having a concentration of not less than 10 ppm in terms of phosphorus atom.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: February 12, 2002
    Assignee: Mitsui Chemicals Inc
    Inventors: Takeshi Ohmatsuzawa, Fujito Ehara, Hideshi Hori, Kazuo Toyota, Kenzaburou Fukutani, Junichi Imuta, Akiyoshi Shimizu, Takayuki Onogi, Seiji Noda, Masayuki Sakai, Shoji Hiraoka, Koji Nakamachi, Michio Tsugawa, Satoru Miyazoe
  • Publication number: 20020010310
    Abstract: The invention relates to a process for the preparation of polyesters of a glycol and a dicarboxylic acid which comprises the following steps:
    Type: Application
    Filed: February 6, 2001
    Publication date: January 24, 2002
    Inventors: Kevin Dale Allen, Emery Don Johnson, Cecilia Zuqi Tse, Samuel Martin Moats
  • Patent number: 6316584
    Abstract: For the production of polyesters and copolyesters, coprecipitates are used individually or in a mixture as polycondensation catalysts, the coprecipitates being prepared by simultaneous hydrolytic precipitation of a titanium compound and a metallic compound of a metal selected from the groups IA, IIA, VIIIA, IB, IIB, IIIB, and IVB, whereby the titanium compound and the metallic compound are, independently of one another, an alkylate, alcoholate, or carboxylate of titanium or the metal, respectively, and the molar ratio of the titanium compound to the metallic compound is ≧50:50 mol/mol. The coprecipitates exhibit a higher catalytic activity than Sb2O3 which results in a prefered amount of usage of only 10 to 100 ppm with respect to the esters or oligoesters to undergo polycondensation.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: November 13, 2001
    Assignee: Akzo Nobel NV
    Inventors: Ulf Seidel, Michael Gerd Martl
  • Patent number: 6245880
    Abstract: A polyester having a good color tone can be obtained by using, as an ester-forming component, a compound derived from an organophosphorous composition comprising an organophosphorous compound represented by the general formula (1): wherein R1 and R2 represent an organic group or a halogen atom, and m and n represent an integer of 0 to 4, provided that R1 and R2 may be the same or different when m or n is an integer of 2 to 4, and a divalent metallic compound in an amount more than 30 ppm and not more than 2300 ppm in terms of a divalent metal based on the organophosphorous compound.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: June 12, 2001
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Hideo Takeuchi, Maki Sato, Shoichi Gyobu
  • Patent number: 6150494
    Abstract: The invention relates to a polymer prepared from the repeat units of residues of a monomer of at least one dicarboxylic acid or ester; a monomer comprising a diol, diamine or a mixture thereof; a monomer comprising at least one sulfonate group and at least one polyester reactive group, and a monomer comprising an optical brightener agent having at least one polyester reactive group. The invention further relates to a method for preparing a polymer. The invention further relates to method of marking an article or composition with the polymer. The invention further relates to a method for detecting and separating an article contacted with the polymer. The invention further relates to an article or composition contacted with the polymer. The invention further relates to a method for enhancing the optical brightness of an article or composition, by contacting the article or composition with the polymer.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: November 21, 2000
    Assignee: Eastman Chemical Company
    Inventors: Richard Hsu-Shien Wang, James J. Krutak, Mahendra K. Sharma, Barbara C. Jackson
  • Patent number: 6150429
    Abstract: The present invention provides polyester/vinyl dioxolane based coating compositions containing no or essentially no volatile organic components. Oligomers for forming the coating compositions of the present invention are vinyl dioxolane end-capped polyester oligomers.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: November 21, 2000
    Assignee: Foster-Miller, Inc.
    Inventors: Robert F. Kovar, Nese Orbey, Nelson Landrau, William E. Dorogy, Jr., Paul Osenar
  • Patent number: 6143863
    Abstract: A lactide polymer composition combining compositional and purity limitations and catalyst optimization or addition of stabilizing agents resulting in a melt-stable polymer is disclosed. The melt-stable lactide polymer comprises a plurality of polylactide polymer chains, residual lactide in concentration of less than 2 percent and water in concentration of less than 1000 parts-per-million. A stabilizing agent in an amount sufficient to reduce depolymerization of the lactide polymer during melt-processing or alternatively, control of catalyst level at a molar ratio of monomer to catalyst greater than 3000:1 is also included in the melt-stable composition. A process for manufacture of a melt-stable lactide polymer composition includes polymerizing a lactide mixture and adding stabilizing agents sufficient to reduce depolymerization of the polylactide during melt-processing, followed by devolatilizing the polylactide to remove monomer and water.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: November 7, 2000
    Assignee: Cargill, Incorporated
    Inventors: Patrick Richard Gruber, Jeffrey John Kolstad, Eric Stanley Hall, Robin Sue Eichen Conn, Christopher M. Ryan
  • Patent number: 6133404
    Abstract: A biodegradable polyester is formed by carrying out esterification and polycondensation with a carboxylic acid monomer group comprising at least one aliphatic dicarboxylic acid containing 2 to 14 carbon atoms and at least one aromatic or alicyclic carboxylic acid, and at least one glycol in the presence of a composite catalyst comprising a titanium compound, a zinc compound, an antimony compound and a phosphorous compound. The composite catalyst significantly improves the reaction rate of polyester polymerization as well as increases the production amounts of the polyester, as compared with conventional catalysts. The polyester is high in molecular weight, excellent in thermal and mechanical properties by virtue of the introduction of the aromatic or alicyclic carboxylic acid or its derivative, in addition to showing good biodegradability. This polyester can replace preexisting, expensive aliphatic polyesters.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: October 17, 2000
    Assignee: National Institute of Technology and Quality
    Inventors: Hye Jung Kang, Sang Soon Park, Yong Joo Kim
  • Patent number: 6114458
    Abstract: A branched radial block copolymer including the reaction product of a dendritic macromolecular initiator, and one or more chain extending monomers.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: September 5, 2000
    Assignee: International Business Machines Corporation
    Inventors: Craig Jon Hawker, James Lupton Hedrick, Olof Mikael Trollsas
  • Patent number: 6040417
    Abstract: A process for preparing polyethylene naphthalate polymer by using a composite catalyst. The process comprises the steps of esterifying a dicarboxylic acid containing 2,6-NDCA, a dicarboxylic ester containing 2,6-NDC or derivatives thereof, with ethylene glycol or a glycol containing ethylene glycol to produce esterification polymers containing bis(beta-hydroxyethyl)naphthalate; continuously polycondensing the obtained esterification polymers to prepare a polymers of polyethylene naphthalate; and wherein the process includes using a composite polymerization catalyst, said composite polymerization catalyst comprising a titanium compound, a phosphorous compound and optionally an antimony compound. The process can considerably reduce both the esterification time and the polycondensation time and provides a good color and excellent physical characteristics.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: March 21, 2000
    Inventors: Hyun Nam Cho, Jae Min Hong, Young Chan Ko, Il Seok Choi, Young Jin Heo
  • Patent number: 5989663
    Abstract: The invention relates to a copolyester, having (a) a repeat unit of a dicarboxylic acid component, having from 80 to 100 mole % terephthalic acid or the corresponding ester thereof, and from 0 to 20 mole % of a modifying aromatic dicarboxylic acid having less than or equal to 20 carbon atoms or the corresponding ester thereof, wherein the total mole % of dicarboxylic acid component is equal to 100 mole %; and (b) a repeat unit of a glycol component, having from 5 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol, ethylene glycol of from 15 to 95 mole %, and at least 1 mole % of a modifying glycol having from 3 to 16 carbon atoms, wherein the total mole % of glycol component is equal to 100 mole %. The invention also relates to a method of making the copolyester described above. The invention also relates to articles made from the copolyesters described above. The invention further relates to a method of determining the melt strength and sag of a polyester.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: November 23, 1999
    Assignee: Eastman Chemical Company
    Inventors: John C. Morris, James R. Bradley, Kab Sik Seo
  • Patent number: 5990266
    Abstract: Degradable polyesters useful in packaging, packing, agricultural, biomedical, and other applications are made by reacting amine-protected glutamic acid with diols or epoxy compounds. The polyesters include a thermoplastic main chain aliphatic polyester, a thermoset heterochain polyester and a thermoset heterochain aromatic polyester. Each of these polyesters can be hydrolyzed into monomers using a biological catalyst such as the enzyme lipase. The thermoplastic main chain aliphatic polyester and the thermoset heterochain polyester can be degraded to respiratory gases and biomass with a mixed culture of Rhizopus, chinesis, Rhizopus delemar, Penecillium pinophilum, Aspergillus niger and Pseudomonas aeruginosa microorganisms. This mixed culture of microorganisms can also be used to degrade other polyesters containing hydrolyzable backbone polyesters.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: November 23, 1999
    Assignee: University of Nebraska
    Inventors: Raef M. Tadros, Delmar C. Timm
  • Patent number: 5922829
    Abstract: Disclosed is are high molecular weight copolyester compositions which possess high melt viscosity and melt strength which render them foamable with a wide range of foaming agents. The copolyesters consist essentially of (A) diacid residues comprising (i) from about 99.9 to about 95 mol % of residues of an aromatic dicarboxylic acid having 8 to 12 carbon atoms and (ii) from about 0.1 to about 5.0 mol % of residues of an aromatic dicarboxylic acid sulfonate monomer containing at least one divalent metal sulfonate group attached to an aromatic nucleus, and (B) diol residues comprising residues of at least one aliphatic or cycloaliphatic diol having 2 to 8 carbon atoms, the mol % being based on 100 mol % dicarboxylic acid residues and 100 mol % diol residues.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: July 13, 1999
    Assignee: Eastman Chemical Company
    Inventor: Kishan Chand Khemani
  • Patent number: 5898058
    Abstract: A continuous process for producing polyethylene terephthalate polyester from terephthalic acid and ethylene glycol uses a stabilizer, preferably containing phosphorous, to produce a high quality polyethylene terephthalate polyester which is relatively free of the acetaldehyde and discoloration which are associated with the post-polymerization activity of a polymerization catalyst. The stabilizer is preferably added at or after the end of the polymerization reaction prior to polymer processing to deactivate the polymerization catalyst and can increase the throughput of the polyester without adversely affecting the thermal stability of the polyethylene terephthalate polyester. Alternatively, the late addition of the stabilizer can increase the thermal stability of the polyester without adversely affecting the throughput of the polyethylene terephthalate polyester.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: April 27, 1999
    Assignee: Wellman, Inc.
    Inventors: Carl S. Nichols, Tony Clifford Moore, Walter Lee Edwards
  • Patent number: 5880224
    Abstract: A process for producing an aliphatic polyester carbonate which comprises reacting (1) an aliphatic dicarboxylic acid compound containing succinic acid as a main component, (2) an aliphatic dihydroxy compound containing 1,4-butanediol as a main component, and (3) (a) a polyhydric alcohol having 3 or more hydroxyl groups in a molecule, (b) a polybasic carboxylic acid compound having 3 or more carboxyl groups in a molecule, or (c) a polybasic carboxylic acid having one or more hydroxyl groups in a molecule to obtain an aliphatic polyester oligomer and reacting the obtained aliphatic polyester oligomer and a carbonate compound, wherein the aliphatic polyester carbonate has a melt tension of 1.5 g or more at 190.degree. C.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: March 9, 1999
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Mitsuo Miura, Kyohei Takakuwa, Takayasu Fujimori, Maki Ito
  • Patent number: 5869543
    Abstract: The invention comprises a method for synthesizing polyethylene terephthalate from waste polyethylene terephthalate by cleavage with ethylene glycol and separation of bis(hydroxyethylene) terephthalate from the cleavage mixture with a specific temperature program, recrystallization from water, and esterification and polycondensation with the addition of terephthalic acid.The invention further comprises a method for synthesis of polyethylene naphthalate from waste polyethylene naphthalate in a similar manner.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: February 9, 1999
    Assignee: Zimmer Aktiengesellschaft
    Inventors: Frank Boos, Norman Schnittker, Joachim Seelig
  • Patent number: 5854359
    Abstract: A process for making polyetherester resins is disclosed. A glycol ester of an aromatic diacid such as terephthalic acid is reacted with a polyether and a source of a dicarboxylic acid such as maleic anhydride to produce a polyetherester resin, wherein the aromatic diester content may be conveniently adjusted as desired. The process permits the preparation of unsaturated polyetherester resins with relatively high levels of terephthalate repeating units while avoiding the difficulties associated with the direct use of terephthalic acid in previously known procedures. Such unsaturated polyetheresters are useful for making thermoset resins with excellent mechanical and physical properties.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: December 29, 1998
    Assignee: ARCO Chemical Technology, L.P.
    Inventor: Lau S. Yang
  • Patent number: 5852164
    Abstract: A polyester comprises a dicarboxylic acid moiety comprising terephthalic acid or its ester forming derivative and a diol moiety comprising ethylene glycol and 1,4-cyclohexanedimethanol of 10 to 60 mol % based on the whole diol moiety, the intrinsic viscosity of the polyester being 0.68 to 0.95 dl/g, the "b" value of color tone of the produced pellets of polyester being -5 to 5, the number of the carboxylic acid terminals being not more than 30 eq/ton, and the sum of the numbers of the vinyl terminals, the vinylidene terminals and the methylcyclohexene terminals being not more than 25 eq/ton.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: December 22, 1998
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hideko Akai, Katsuji Tanaka, Masahiko Fujimoto, Noboru Sato
  • Patent number: 5811513
    Abstract: In the production of polyethylene naphthalate of the present invention, the esterification reaction between naphthalenedicarboxylic acid and ethylene glycol is conducted while causing water to be present in a reaction system from a start of reaction, in the presence of at least one catalyst selected from the group consisting of nitric, carboxylic, phosphoric and hydrogenphosphoric acid metal salts and alkyl amines according to necessity, to thereby attain an esterification ratio of 45 to 80%, so that a liquid mixture of naphthalenedicarboxylic acid esterification reaction products containing naphthalenedicarboxylic acid, carboxyl-hydroxyethoxycarbonylnaphthalene and bis(hydroxyethoxycarbonyl)naphthalene is obtained. Subsequently, a crystallized reaction product is separated from this liquid mixture to thereby obtain a mixture of esterification reaction products. Thereafter, this mixture having ethylene glycol added thereto according to necessity is subjected to polycondensation.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: September 22, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Hiroshi Iwasaki, Masayasu Ishibashi, Hiromi Ueki, Shoji Hiraoka, Toru Matsuyoshi, Satoshi Inoki
  • Patent number: 5770659
    Abstract: Processes for making storage-stable epoxy-capped polyetherester resins are disclosed. In one process, a polyetherester resin is first made by inserting a carboxylic acid derivative into a polyether. Reacting the resin with a capping agent gives an intermediate resin with a reduced content of free carboxylic acid groups. Finally, the intermediate resin reacts with an epoxy compound in the presence of a finishing catalyst under conditions effective to give an epoxy-capped resin. The resins have low weight average molecular weights (less than about 8000), narrow molecular weight distributions (less than 6), and low viscosities, making them an excellent choice for low-VOC formulations. The finishing catalyst helps to minimize resin viscosity drift and improves shelf stability. Curing the resins with a vinyl monomer gives thermosets with an excellent balance of physical properties, including excellent water resistance.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: June 23, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Gangfeng Cai, Daniel M. Trauth, Lau S. Yang
  • Patent number: 5741882
    Abstract: A process to prepare a high molecular weight aliphatic polyester is disclosed, where a catalyst is portionwise added, and a radical scavenger is also added. The aliphatic polyester obtained has a number average molecular weight larger than 70,000.
    Type: Grant
    Filed: September 21, 1995
    Date of Patent: April 21, 1998
    Assignee: Tonen Corporation
    Inventors: Takeaki Fujii, Kenji Kobayashi, Sadakatsu Suzuki, Hiroshi Ueno
  • Patent number: 5714570
    Abstract: A method for preparing polyester by use of a catalyst. The method comprises the steps of: esterifying either a terephthalic acid, a dicarboxylic acid containing terephthalic acid or derivatives thereof with either ethylene glycol or a glycol containing ethylene glycol, or derivatives thereof to produce an esterification product containing either bis(.beta.-hydroxyethyl) terephthalate, its low molecular weight polymer, or a combination of .beta.-hydroxyethyl terephthalate and its low molecular weight polymer; and continuously polycondensing the obtained esterification product to prepare a polyester, wherein in the said polycondensing step, a composite polymerization catalyst dissolved in an ethylene glycol or an ethylene glycol-containing solution, consisting of a compound of antimony, a compound of titanium, and a compound of tin is used.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: February 3, 1998
    Assignee: Korea Institute of Science and Technology
    Inventors: Chung Yup Kim, Hyun Nam Cho, Hoi Wan Yoo, Hyung Joon Kim
  • Patent number: 5681659
    Abstract: A fluorescent complex polymer with fluorescent organometallic complexes connected by organic chain spacers is utilized in the fabrication of light emitting devices on a substantially transparent planar substrate by depositing a first conductive layer having p-type conductivity on the planar surface of the substrate, depositing a layer of a hole transporting and electron blocking material on the first conductive layer, depositing a layer of the fluorescent complex polymer on the layer of hole transporting and electron blocking material as an electron transporting emissive layer and depositing a second conductive layer having n-type conductivity on the layer of fluorescent complex polymer.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: October 28, 1997
    Assignee: Motorola
    Inventors: Song Q. Shi, Franky So
  • Patent number: 5677396
    Abstract: An improved process for making polyetherester resins is disclosed. The process comprises reacting a polyether with a diol diester in the presence of a catalyst that promotes random insertion of the diester into carbon-oxygen bonds of the polyether to produce the polyetherester resin. The process of the invention offers many advantages, including higher resin yields, reduced by-product generation, and the ability to make resins with low color and low acid numbers. The resins are useful for making polyetherester thermosets.
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: October 14, 1997
    Assignee: ARCO Chemical Technology, L.P.
    Inventor: Jeffrey A. Klang
  • Patent number: 5674618
    Abstract: A biaxially oriented polyester film which contains 0.01 to 5 wt % of zinc oxide having an average particle diameter ranging from 0.01 to 5 .mu.m has improved transparency, UV light shielding ability and surface properties, and it is especially useful as wrapping materials for food, labels, window coating films, photoresists and the like. The zinc oxide may be optionally pretreated with a silane coupling agent of formula (I):R.sup.1 --R.sup.2 --Si--(OR.sup.3).sub.3 (I)wherein,R.sup.1 is a methacryl ##STR1## an epoxy ##STR2## or an amino (--NR'.sub.2) group wherein each R' is independently a hydrogen or an alkyl radical;R.sup.2 is a C.sub.1-5 alkylene group; andR.sup.3 is a C.sub.1-3 alkyl group.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: October 7, 1997
    Assignee: SKC Limited
    Inventors: Kwang-Hyung Lee, Seung-Soo Woo
  • Patent number: 5668243
    Abstract: This invention relates to a polyester resin prepared by adding one or more dicarboxylic acid components to one or more glycol components containing 1,4-cyclohexanedimethanol equalling 100 mole %, the polyester resin having been prepared in the presence of a catalyst/stabilizer system consisting essentially of antimony compounds and phosphorous compounds and compounds selected from the group consisting essentially of zinc compounds, gallium compounds, and silicon compounds.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: September 16, 1997
    Assignee: Eastman Chemical Company
    Inventors: Cheuk Chung Yau, Leslie Shane Moody
  • Patent number: 5665151
    Abstract: The present invention provides inks which contain a near infrared fluorophoric compound incorporated into a water-dissipatible polyester backbone. The inks of the present invention are preferably colorless or "invisible" but could be made slightly colored if desirable. Specifically, the inks of the present invention comprise:A. between about 1 and 10 weight percent of at least one water-dissipatable polyester having from about 0.1 ppm by weight to about 10% by weight of a thermally stable near infrared fluorophoric compound copolymerized therein;B. between about 5 and 75 weight percent of at least aliphatic humectant;C. between about 0 and 15 weight percent of at least one lower aliphatic alcohol of no more than 3 carbon atoms;D. water and optionally up to about 2 weight percent of one or more additives;wherein the weight percentages of components A-D equal 100%.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: September 9, 1997
    Assignee: Eastman Chemical Company
    Inventors: Nelson Zamora Escano, James John Krutak, Sr.
  • Patent number: 5654380
    Abstract: Provided are an aliphatic polyester carbonate having biodegradability and having a content of carbonate unit of at least 5 mol %, a weight-average molecular weight of at least 100,000, a melt viscosity of 2,000-50,000 poises at 190.degree. C. and under a load of 60 kg and a melting point of 70.degree.-180.degree. C., and a process for producing said aliphatic polyester carbonate which comprises reacting an aliphatic dihydroxy compound with an aliphatic dibasic acid in the presence of an ester exchange catalyst to obtain an oligomer and then reacting the oligomer with a diaryl carbonate in the presence of the ester exchange catalyst. A phosphorus compound may be added to the aliphatic polyester carbonate for the purpose of stabilization.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: August 5, 1997
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Ryozo Kawai, Mitsuo Miura, Kyohei Takakuwa, Yoshinori Isahaya, Takayasu Fujimori, Jiro Suito, Makoto Nakamura
  • Patent number: 5650481
    Abstract: This invention relates to a polyester resin prepared by adding one or more dicarboxylic acid components to one or more glycol components containing 1,4-cyclohexanedimethanol equalling 100 mole %,the polyester resin having been prepared in the presence of a catalyst/stabilizer system consisting essentially of antimony compounds and phosphorous compounds and compounds selected from the group consisting essentially of zinc compounds, gallium compounds, and silicon compounds.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: July 22, 1997
    Assignee: Eastman Chemical Company
    Inventors: Cheuk Chung Yau, Leslie Shane Moody
  • Patent number: 5623047
    Abstract: A catalyst composition for use in a polycondensation reaction for making poly(ethylene terephthalate) from terephthalic acid comprising: (a) an antimony salt catalyst present in a range from about 10 to about 1,000 ppm; (b) a metal salt catalyst of at least one of cobalt, magnesium, zinc, manganese, calcium, and lead, present in a range from about 10 to about 500 ppm; and (c) an alkali metal acetate, present in a range from about 10 to about 500 ppm; all amounts are based on the metallic elements relative to the theoretical yield of the poly(ethylene terephthalate), by weight, to be made from the terephthalic acid. The catalyst composition was found to have increased the reaction rate in the production of poly(ethylene terephthalate), as well as improved the color of the produced product, by reducing the degree of yellowness in the final poly(ethylene terephthalate) product. Attenuation of the yellowish color indicates a reduction in the amount of undesired side reaction product.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: April 22, 1997
    Assignee: Industrial Technology Research Institute
    Inventors: Wu-Bin Yuo, Jong-Wu Chen, Yu-Shan Chao
  • Patent number: 5614008
    Abstract: The present invention provides inks which contain a near infrared fluorophoric compound incorporated into a water-dissipatible polyester backbone. The inks of the present invention are preferably colorless or "invisible" but could be made slightly colored if desirable. Specifically, the inks of the present invention comprise:A. between about 1 and 10 weight percent of at least one water-dissipatable polyester having from about 0.1 ppm by weight to about 10% by weight of a thermally stable near infrared fluorophoric compound copolymerized therein;B. between about 5 and 75 weight percent of at least aliphatic humectant;C. between about 0 and 15 weight percent of at least one lower aliphatic alcohol of no more than 3 carbon atoms;D. water and optionally up to about 2 weight percent of one or more additives;wherein the weight percentages of components A-D equal 100%.
    Type: Grant
    Filed: October 23, 1995
    Date of Patent: March 25, 1997
    Inventors: Nelson Z. Escano, James J. Krutak, Sr.
  • Patent number: 5612444
    Abstract: A two-step process for making polyetherester resins is disclosed. A low molecular weight polyol reacts with an aromatic dicarboxylic acid in step one to produce a polyester intermediate. In step two, the polyester intermediate reacts with an anhydride or an aliphatic dicarboxylic acid in the presence of an insertion catalyst to produce a polyetherester resin that contains greater than about 10 wt. % of recurring units derived from the aromatic dicarboxylic acid. The polyetheresters are useful for making thermoset resins with excellent mechanical properties and chemical resistance.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: March 18, 1997
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Gangfeng Cai, Lau S. Yang, Jeffrey A. Klang
  • Patent number: 5610205
    Abstract: A process for making polyetheresters is disclosed. A polyether is reacted with a carboxylic acid in the presence of a strong protic acid or a metal salt of a strong protic acid to promote insertion of the carboxylic acid into polyether carbon-oxygen bonds to produce a polyetherester. The polyetheresters are useful for various applications in the polyurethane and unsaturated polyester industries.
    Type: Grant
    Filed: May 14, 1996
    Date of Patent: March 11, 1997
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Lau S. Yang, Jeffrey A. Klang
  • Patent number: 5608031
    Abstract: This invention relates to a polyester resin prepared by adding one or more dicarboxylic acid components to one or more glycol components containing 1,4-cyclohexanedimethanol equalling 100 mole %,the polyester resin having been prepared in the presence of a catalyst/stabilizer system consisting essentially of antimony compounds and phosphorous compounds and compounds selected from the group consisting essentially of zinc compounds, gallium compounds, and silicon compounds.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: March 4, 1997
    Assignee: Eastman Chemical Company
    Inventors: Cheuk C. Yau, Leslie S. Moody
  • Patent number: 5608032
    Abstract: A catalyst composition for use in a polycondensation reaction for making poly(ethylene terephthalate) from terephthalic acid comprising: (a) an antimony salt catalyst present in a range from about 10 to about 1,000 ppm; (b) a metal salt catalyst of at least one of cobalt, magnesium, zinc, manganese, calcium, and lead, present in a range from about 10 to about 500 ppm; and (c) a phosphorus salt co-catalyst selected from the group consisting of alkali metal phosphates, alkali metal phosphites, alkali metal hypophosphites and alkali metal polyphosphates, present in a range from about 10 to about 500 ppm; all amounts are based on the metallic or phosphorus element relative to the theoretical yield of the poly(ethylene terephthalate), by weight, to be made from the terephthalic acid.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: March 4, 1997
    Assignee: Industrial Technology Research Institute
    Inventors: Wu-Bin Yuo, Jong-Wu Chen, Yu-Shan Chao
  • Patent number: 5569737
    Abstract: A process for making polyetheresters is disclosed. A polyether is reacted with a carboxylic acid in the presence of a strong protic acid or a metal salt of a strong protic acid to promote insertion of the carboxylic acid into polyether carbon-oxygen bonds to produce a polyetherester. The polyetheresters are useful for various applications in the polyurethane and unsaturated polyester industries.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: October 29, 1996
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Lau S. Yang, Jeffrey A. Klang
  • Patent number: 5561183
    Abstract: Antibacterial and deodorant polyester for fiber which is much improved in melt viscosity, is prepared by adding the melt viscosity enhancers represented by the following general formulas I to IV and compounding with zirconium phosphate: ##STR1##
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: October 1, 1996
    Assignee: Sam Yang Co., Ltd.
    Inventors: Lee S. Kwon, In K. Choi
  • Patent number: 5530088
    Abstract: A heat resistant phosphorus-containing polymeric flame retardant and a process for preparing the same are disclosed. The process is characterized in that in polycondensation a selected metal salt serving as cocatalyst is used to catalyze a phosphorus-containing compound, a saturated dicarboxylic acid or the derivatives thereof, and a diol to form a high phosphorus content, high molecular weight flame retardant. The selected metal salts can promote the polymerization of phosphorus-containing compounds and polyester, and can inhibit side reactions and depolymerization so as to increase the phosphorus content of the resulting products and reduce the manufacturing cost. The flame retardants thus prepared can endure processing at an elevated temperature and thus are suitable for being applied in flame retardant fibers, fabrics, nonwoven fabrics, adhesives, and plastics.
    Type: Grant
    Filed: June 21, 1995
    Date of Patent: June 25, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Yuung-Ching Sheen, Shinn-Jen Chang, Yi-Ni Cheng, Rong-Shuh Chang