Using Fiducial Marker Patents (Class 600/414)
  • Publication number: 20140039298
    Abstract: A device, system, and method for entering a medical device such as a needle into the body inside a medical imager such as a MRI scanner, CT, X-ray fluoroscopy, and ultrasound imaging, from within a body cavity (such as the rectum, vagina, or laparoscopically accessed cavity). A three degree-of-freedom mechanical device translates and rotates inside the cavity and enters a needle into the body, and steers the needle to a target point selected by the user. The device is guided by real-time images from the medical imager. Networked computers process the medical images and enable the clinician to control the motion of the mechanical device that is operated within the imager, outside of the imager or remotely from outside the imager.
    Type: Application
    Filed: July 23, 2013
    Publication date: February 6, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Louis L. Whitcomb, Axel Krieger, Robert Charles Susil, Gabor Fichtinger, Ergin Atalar, Iulian I. Iordachita
  • Patent number: 8644906
    Abstract: A method includes providing a patch including: a flexible base layer that is mountable on and substantially conformable to a patient's body surface, the base layer having opposed upper and lower primary surfaces; a flexible substrate that is releasably attached to the upper primary surface of the base layer and substantially conformable to the patient's body surface; and at least one MRI-visible fiducial element defined by or secured to the flexible substrate. The method further includes: securing the base layer to the body surface to mount the patch on the body surface such that the flexible substrate conforms to the body surface; MRI scanning the patient with the patch on the body surface to generate corresponding image data; identifying a physical location on the body surface using the image data; and removing the flexible substrate from the base layer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: February 4, 2014
    Assignee: MRI Interventions, Inc.
    Inventors: Peter Piferi, Raffaele Mazzei, Alex Diener, Brady Steele
  • Patent number: 8644570
    Abstract: A patient defines a patient space in which an instrument can be tracked and navigated. An image space is defined by image data that can be registered to the patient space. A tracking device can be connected to a member in a known manner that includes imageable portions that generate image points in the image data. The tracking device can be tracked to register patient space to image space.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 4, 2014
    Assignee: Medtronic Navigation, Inc.
    Inventors: Steven L. Hartmann, Robert Teichman, Laurent Verard
  • Patent number: 8634899
    Abstract: The invention provides a device for percutaneously implanting an imaging marker for identifying a location within a tissue mass. The subcutaneous imaging marker comprises at least a first element and a second element, each of which have a primary imaging mode. The primary imaging mode of the first element is different from that of the second element.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: January 21, 2014
    Assignee: Bard Peripheral Vascular, Inc.
    Inventors: Ryan L. Goosen, Steven E. Field, Richard M. Chesbrough
  • Publication number: 20140018664
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Application
    Filed: April 4, 2012
    Publication date: January 16, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Alk Uhlemann
  • Patent number: 8626270
    Abstract: The invention provides materials, devices and methods for marking biopsy sites for a limited time. The biopsy-marking materials are ultrasound-detectable bio-resorbable powders, with powder particles typically between about 20 microns and about 800 microns in maximum dimension, more preferably between about 300 microns and about 500 microns. The powders may be formed of polymeric materials containing cavities sized between about 10 microns and about 500 microns, and may also contain binding agents, anesthetic agents, hemostatic agents, and radiopaque markers. Devices for delivering the powders include tubes configured to contain the powders and to fit within a biopsy cannula, the powders being ejected by action of a syringe. Systems may include a tube containing powder, and a syringe containing sterile saline. The tube may be configured to fit within a biopsy cannula such as a Mammotome® or SenoCor 360™ cannula.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: January 7, 2014
    Assignee: Senorx, Inc.
    Inventors: Fred H. Burbank, Paul Lubock, Michael L. Jones
  • Patent number: 8620405
    Abstract: A skin marker for providing a reference point for a plurality of different medical imaging procedures, said marker incorporating one or more substances having one or more of radiance and/or hydration and/or radiopaque and/or radio luminescent and/or radioactive properties for detection by X-ray and/or Computer Tomography (CT) and/or MRI and/or Ultrasonic scanning processes and/or Positron Emission Tomography (PET), and one or more markings recognizable by an optical imaging process such as 3D surface scanning.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: December 31, 2013
    Assignee: University of Ulster
    Inventors: Brian McClelland, Robert John Winder, Justin Dominic Martin Magee, Paul McCarron
  • Patent number: 8611983
    Abstract: The invention provides methods and apparatus for navigating a medical instrument to a target in the lung. In one embodiment, the invention includes inserting a bronchoscope into the lung, inserting a catheter into the lung through the working channel of the bronchoscope, inserting a tracked navigation instrument wire into the lung through the catheter, navigating the tracked navigation instrument through the lung to the target, advancing the catheter over the tracked navigation instrument to the target, removing the tracked navigation instrument from the catheter, and inserting a medical instrument into the catheter, thus bringing the medical instrument in proximity to the target.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: December 17, 2013
    Assignee: Philips Electronics Ltd
    Inventor: Neil David Glossop
  • Patent number: 8600135
    Abstract: A system and method for automatically generating sample points from a series of medical images and identifying a significant region are presented. An image acquisition system acquires the medical images of a region of interest (ROI) and an automated mask generator reviews the images to generate a parenchyma mask. Using the parenchyma mask, an automated sample point generator then detects portions of the medical images indicative of a material expected to be in a ROI and designates sample points therefrom. A target-tissue identification system uses the sample points to create a mathematical description of a target tissue and an enhanced target-tissue. A target-tissue change detection system then detects changes in the mathematical descriptions from those created using prior images. Finally, a significant region detector, which includes a training process to generate a quantitative definition of significance, automatically identifies a significant object in the series of medical images.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 3, 2013
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Julia W. Patriarche, Bradley J. Erickson
  • Publication number: 20130296690
    Abstract: Methods, apparatuses, and systems relating to image guided interventions on dynamic tissue. One embodiment is a method that includes creating a dataset that includes images, one of the images depicting a non-tissue internal reference marker, being linked to non-tissue internal reference marker positional information, and being at least 2-dimensional. Another embodiment is a method that includes receiving a position of an instrument reference marker coupled to an instrument; transforming the position into image space using a position of a non-tissue internal reference marker implanted in a patient; and superimposing a representation of the instrument on an image in which the non-tissue internal reference marker appears. Computer readable media that include machine readable instructions for carrying out the steps of the disclosed methods. Apparatuses, such as integrated circuits, configured to carry out the steps of the disclosed methods.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 7, 2013
    Inventor: Jerome R. EDWARDS
  • Patent number: 8554303
    Abstract: A radio-frequency (RF) coil for obtaining magnetic resonance data for imaging the cervical region of a patient has a loop coil contained in a housing of an applicator assembly that is adapted for placement against the cervix of the patient, and a loopless antenna contained in a tandem applicator of the assembly, that is adapted for intracorporeal placement in the cervix of the patient.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: October 8, 2013
    Inventors: Ergin Atalar, Nikolay V. Visksenko
  • Patent number: 8549732
    Abstract: A surgical navigation system for navigating a region of a patient includes a non-invasive dynamic reference frame and/or fiducial marker, sensor tipped instruments, and isolator circuits. The dynamic reference frame may be repeatably placed on the patient in a precise location for guiding the instruments. The instruments may be precisely guided by positioning sensors near moveable portions of the instruments. Electrical sources may be electrically isolated from the patient.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: October 8, 2013
    Assignee: Medtronic Navigation, Inc.
    Inventors: Bruce M. Burg, John H. Dukesherer, Bradley A. Jascob, Paul Kessman
  • Patent number: 8548563
    Abstract: A method and apparatus for registering physical space to image space is disclosed. The system allows for determining fiducial markers as pixels or voxels in image data. The system can correlate and register the determined fiducial points with fiducial markers in physical space.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: October 1, 2013
    Assignee: Medtronic Navigation, Inc.
    Inventors: David A. Simon, Amir Ghanei, Kevin E. Mark, Andrew Lajoie, Geoffrey M. Ruckel
  • Publication number: 20130218003
    Abstract: A method for localizing a skin entry point on a patient for a percutaneous intervention includes planning a needle trajectory for the percutaneous intervention using a 3D planning image dataset and a planning application, performing a superior-inferior localization of an imaging scanner table containing an imaging scanner using the needle trajectory, and performing a lateral localization of the skin entry point using the needle trajectory.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 22, 2013
    Applicants: Siemens Aktiengesellschaft, Siemens Corporation
    Inventors: Eva Rothgang, Wesley David Gilson
  • Patent number: 8498689
    Abstract: Systems, methods and articles of manufacture are disclosed for capturing motion information in a magnetic resonance imaging (MRI) environment. A light sink in the MRI environment may detect light emitted from a plurality of light sources. Each of the plurality of light sources may emit light of a different frequency. Further, each of the plurality of light sources may be located at a different spatial position in the MRI environment. The detected light may be analyzed. A change in spatial position of the light sink may be computed based on the analysis.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: July 30, 2013
    Assignee: International Business Machines Corporation
    Inventors: David S. Lake, Armando Manduca, Jeffrey S. McAllister, Nelson Ramirez
  • Patent number: 8498693
    Abstract: An elongated intracorporeal remotely detectable marker includes a core of bioabsorbable fibers. An outer jacket of bioabsorbable fibers is disposed around at least part of the core. In one embodiment, for example, the core has a longitudinal extent and a pair of opposed ends, and the outer jacket is disposed around the longitudinal extent of the core, with the pair of opposed ends being exposed.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 30, 2013
    Assignee: Senorx, Inc.
    Inventors: Michael L. Jones, Paul Lubock, John Merritt
  • Publication number: 20130184562
    Abstract: An intracorporeal marker, for marking a site within living tissue of a host, includes an outer body portion of biodegradable material. An inner body portion is located in the outer body portion. The inner body portion includes biological material that becomes calcified in the living tissue of the host over time. An agent interacts with the biological material to promote calcification of the biological material of the inner body portion in the living tissue of the host.
    Type: Application
    Filed: March 6, 2013
    Publication date: July 18, 2013
    Applicant: C. R. BARD, INC.
    Inventor: C. R. BARD, INC.
  • Patent number: 8483801
    Abstract: Methods, apparatuses, and systems relating to image guided interventions on dynamic tissue. One embodiment is a method that includes creating a dataset that includes images, one of the images depicting a non-tissue internal reference marker, being linked to non-tissue internal reference marker positional information, and being at least 2-dimensional. Another embodiment is a method that includes receiving a position of an instrument reference marker coupled to an instrument; transforming the position into image space using a position of a non-tissue internal reference marker implanted in a patient; and superimposing a representation of the instrument on an image in which the non-tissue internal reference marker appears. Computer readable media that include machine readable instructions for carrying out the steps of the disclosed methods. Apparatuses, such as integrated circuits, configured to carry out the steps of the disclosed methods.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: July 9, 2013
    Assignee: Veran Medical Technologies, Inc.
    Inventor: Jerome R. Edwards
  • Publication number: 20130165767
    Abstract: Embodiments of systems, methods, and non-transitory computer readable media for automatic landmarking are presented. A coil including at least one marker is placed on a desired region on interest (ROI) of a subject. Further, a detector detects a position of the marker while translating the subject from a home position in an imaging system into a bore of a magnet in the imaging system. A positioning unit coupled to at least one of the coil, the marker and the detector is configured to initiate automatic translation of the subject from the home position into the magnet bore. Further, the positioning unit determines a distance between the detected marker position and a homogenous position of the magnet based at least on the detected marker position. The positioning unit then controls movement of the subject over the determined distance to the homogenous magnet position for automatically landmarking the desired ROI.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert David Darrow, Ileana Hancu, Eric William Fiveland, William Thomas Dixon
  • Patent number: 8463357
    Abstract: The present invention related to an interstitial marker for localizing an organ, tumor or tumor bed within a mammalian body wherein said marker has a proximal end, a distal end, and a continuous intervening length, at least a portion of the intervening length of said marker being visible under at least one imaging modality and having a flexibility such that said marker follows movements and changes of shape of said organ, tumor or tumor bed.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: June 11, 2013
    Assignee: Ion Beam Applications S. A.
    Inventors: Piran Sioshansi, Raymond J. Bricault
  • Publication number: 20130144157
    Abstract: A marker delivery device includes an elongated delivery cannula which has a distal end section, an inner lumen and a discharge opening in the distal end section in communication with the inner lumen. At least one elongated fibrous marker body is slidably disposed within the inner lumen of the elongated delivery cannula. The at least one elongated fibrous marker body includes a plurality of bioabsorbable polymeric strands. The strands are compressed to a compressed configuration and bound together in the compressed configuration with a polymer binding agent prior to insertion into the elongated delivery cannula.
    Type: Application
    Filed: January 25, 2013
    Publication date: June 6, 2013
    Applicant: SenoRx, Inc.
    Inventor: SenoRx, Inc.
  • Patent number: 8452443
    Abstract: An industrial robot system including a workcell including a load area and a process area. A detector detects when a human enters the load area. A manipulator is located in the workcell. At least one positioner is adapted to hold a workpiece and to change the orientation of the workpiece about at least one axis while the manipulator processes the workpiece. A station exchanger is movable about an axis and adapted to move, upon command, the manipulator or the positioner between the load and process area. Each of the axes is provided with a motor and a drive unit. An axis controller is adapted to switch between executing a first task in which the axes of the positioner and the station exchanger are commanded to a standstill, and a second task in which the axes of the positioner and the station exchanger are allowed to move.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: May 28, 2013
    Assignee: ABB Research Ltd
    Inventors: Jan H. Karlsson, Antero Lassuri
  • Publication number: 20130116546
    Abstract: In a method and magnetic resonance apparatus to assist a person in the alignment of a medical instrument used by the person to conduct a minimally invasive procedure with the instrument introduced into a patient at an entrance point in a predetermined orientation, within the patient receptacle of a magnetic resonance device, measurement data are acquired with the magnetic resonance device to determine a current orientation of the instrument and/or an instrument guide, and the measurement data are evaluated to determine the current orientation. A deviation of the current orientation from the predetermined orientation is determined, and at least one acoustic signal is emitted depending on the deviation to assist the person in orienting the instrument.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 9, 2013
    Inventors: Martin Requardt, Eva Rothgang
  • Publication number: 20130108979
    Abstract: The present invention involves a surgical hardware and software monitoring system and method which allows for surgical planning while the patient is available for surgery, for example while the patient is being prepared for surgery so that the system may model the surgical site. In one embodiment, the model may be used to track contemplated surgical procedures and warn the physician regarding possible boundary violations that would indicate an inappropriate location in a surgical procedure. In another embodiment, the hardware may track the movement of instruments during the procedure and in reference to the model to enhance observation of the procedure.
    Type: Application
    Filed: August 9, 2012
    Publication date: May 2, 2013
    Applicant: Navident Technologies, Inc.
    Inventor: Ehud Udi Daon
  • Patent number: 8433391
    Abstract: A site marker and method of using a site marker are described and disclosed. The site marker comprises a bio-compatible and a plurality of elements, wherein the biocompatible material and at least one of the plurality of elements are imageable under different modalities.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: April 30, 2013
    Assignee: Suros Surgical Systems, Inc.
    Inventor: Joseph L. Mark
  • Patent number: 8423119
    Abstract: A fiducial marker assembly (30) is tracked using a magnetic resonance scanner (10). At the tracked position of the fiducial marker assembly, local B0 magnetic field inhomogeneity is measured. A warning is issued if the measured local B0 magnetic field inhomogeneity satisfies a warning criterion. A noise figure of merit of the tracking is also determined, and the warning is also issued if the noise figure of merit satisfies a noise-based warning criterion.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: April 16, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Sascha Krueger, Tobias Schaeffter
  • Patent number: 8417315
    Abstract: A marker system includes a structure having a first surface and a second surface, a first marker located on the first surface, and a second marker located on the second surface, wherein the first marker and the second marker are arranged so that they face approximately a same direction, and so that they can be simultaneously viewed by an optical device, and wherein a first distance between the first marker and the optical device is different from a second distance between the second marker and the optical device when the first and the second markers are simultaneously viewed by the optical device.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: April 9, 2013
    Assignee: Varian Medical Systems, Inc.
    Inventors: Hassan Mostafavi, Andrew G. Jeung
  • Patent number: 8405396
    Abstract: Nuclear Magnetic Resonant Imaging (also called Magnetic Resonant Imaging or “MRI”) devices which are implantable, internal or insertable are provided. The disclosure describes ways to miniaturize, simplify, calibrate, cool, and increase the utility of MRI systems for structural investigative purposes, and for biological investigation and potential treatment. It teaches use of target objects of fixed size, shape and position for calibration and comparison to obtain accurate images. It further teaches cooling of objects under test by electrically conductive leads or electrically isolated leads; varying the magnetic field of the probe to move chemicals or ferrous metallic objects within the subject. The invention also teaches comparison of objects using review of the frequency components of a received signal rather than by a pictorial representation.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventor: Hyman D. Chantz
  • Patent number: 8380288
    Abstract: A system and methods for providing an access to a cochlea of a living subject. In one embodiment of the present invention, a method comprises the steps of operating a surgical instrument towards a region of interest of the living subject for opening an access to the cochlea of the living subject from the lateral edge of the skull of the living subject to the cochlea of the living subject, and intra-operatively monitoring at least a part of the surgical instrument so that the surgical instrument is operated substantially along a predetermined path.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: February 19, 2013
    Assignee: Vanderbilt University
    Inventors: Robert F. Labadie, J. Michael Fitzpatrick
  • Patent number: 8359730
    Abstract: A surgical navigation system for navigating a region of a patient includes a non-invasive dynamic reference frame and/or fiducial marker, sensor tipped instruments, and isolator circuits. The dynamic reference frame may be repeatably placed on the patient in a precise location for guiding the instruments. The instruments may be precisely guided by positioning sensors near moveable portions of the instruments. Electrical sources may be electrically isolated from the patient.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 29, 2013
    Assignee: Medtronic Navigation, Inc.
    Inventors: Bruce M. Burg, John H. Dukesherer, Bradley A. Jascob, Paul Kessman
  • Patent number: 8364243
    Abstract: The invention relates to non-fouling hydrophobic reflective surfaces for a variety of applications which in one embodiment related to medical device applications comprises a method of performing a medical procedure using a surgical navigation system which includes the steps of placing one or more reflective spheres on a surgical instrument or apparatus, the reflective spheres comprising a hydrophobic coating on a sub-micron structured surface of the spheres, wherein the spheres substantially maintain their reflective properties after the spheres are contacted with a biological fluid; shining light on the reflective spheres; capturing reflected light from the spheres with a camera or other device; and registering and/or tracking a location and/or position of the spheres.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 29, 2013
    Assignee: Nanosys, Inc.
    Inventors: Robert Enzerink, R. Hugh Daniels
  • Patent number: 8357145
    Abstract: Systems and techniques for implanting medical devices. In one aspect, an apparatus includes a flexible base member that can be flexed manually to conform to a contour of an anatomy, the base member including a radioscopic indicium that has a characteristic such that, under radioscopic imaging, passage of a skin-penetrating electromagnetic radiation is hindered to an extent that is distinguishable from a hindrance of the electromagnetic radiation by another portion of the base member.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: January 22, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Brett Schleicher, Rafael Carbunaru, Kristen N. Jaax, Todd K. Whitehurst
  • Patent number: 8352014
    Abstract: A site marker is provided that includes a generally hollow body defining a cavity. A deployment line within the site marker positions at least one marker element within the body portion. The deployment line has a first end that is fixedly secured to a first end of the body portion and a second end that is secured to a second end of the body portion. The deployment line is pre-biased so as to pull the first end of the body portion towards the second end of the body portion, and thereby expand the body portion.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: January 8, 2013
    Assignee: Suros Surgical Systems, Inc.
    Inventors: Phillip M. Leopold, Zachary R. Nicoson
  • Publication number: 20130006097
    Abstract: A method of using a shielding device with an applicator includes inserting the distal portion of the shielding device to a treatment site of a patient, the shield being made of plastic, imaging the treatment site, planning treatment of the treatment site based on the imaging, setting up the patient for treatment, imaging the treatment site, removing the distal portion of the shielding device from the treatment site, exchanging the shield made of plastic with a shield made of tungsten, inserting the distal portion of the shielding device to the treatment site, the shield being made of tungsten, imaging the treatment site, and performing the treatment.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 3, 2013
    Inventors: Felix W. Mick, Paul DASILVA
  • Patent number: 8326401
    Abstract: An obturator with an elongated shaft, a proximal end, a substantially closed distal end and a MRI detectable distal shaft portion, which does not interfere with magnetic resonance imaging of tissue proximate thereto. Preferably, the distal shaft portion has an effective MRI detectable mass so as to provide a clear, T1-weighted image within an outline of the distal shaft portion upon magnetic resonance imaging.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: December 4, 2012
    Assignee: Senorx, Inc.
    Inventors: Paul Lubock, Michael L. Jones, Ethan Broadaway, Frank R. Louw
  • Patent number: 8320709
    Abstract: From a sequence of images captured by an image pickup unit, images necessary for measuring placement information regarding markers and/or a sensor are automatically determined and obtained. To this end, using position and orientation information regarding the image pickup unit at the time the image pickup unit has captured an obtained image and placement information regarding detected markers, whether to use the captured image corresponding to the position and orientation is determined. Using the captured image determined to be used, the marker placement information, placement information regarding a measurement target, or the position and orientation of the image pickup unit serving as an unknown parameter is obtained so as to minimize the error between the measured image coordinates and theoretical image coordinates of each marker, which are estimated on the basis of a rough value of the parameter.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 27, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shinichi Aratani, Daisuke Kotake, Shinji Uchiyama
  • Publication number: 20120289818
    Abstract: An embodiment of the current invention provides a method for magnetic resonance (MR) imaging or spectroscopy, comprising: (a) selectively exciting exchangeable solute protons or protons of exchangeable solute-based water molecules within a frequency range in a subject using at least one frequency-selective radio frequency (RF) pulse, wherein the frequency range encompasses characteristic resonance frequencies of the exchangeable solute protons or protons of exchangeable solute-based water molecules, wherein the frequency range is substantially non-overlapping with a characteristic resonance frequency of bulk water protons in the subject, wherein the at least one frequency selective RF pulse performs a substantially minimal excitation on the bulk water protons, and wherein the at least one frequency-selective RF pulse, sometimes in combination with a time period that separates the at least one frequency-selective RF pulse, magnetically labels the exchangeable solute protons or the exchangeable solute-based wat
    Type: Application
    Filed: August 10, 2010
    Publication date: November 15, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Peter van Zijl, Josh Friedman
  • Patent number: 8311610
    Abstract: A biopsy site marker is disclosed. The biopsy site marker includes a first marker element and a second marker element. The first marker element is configured for detection by a first imaging modality. The second marker element is configured for detection by a second imaging modality different from the first imaging modality. The second marker element may be a non-absorbable wire having a predetermined shape and is substantially engaged with the first marker element.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 13, 2012
    Assignee: C. R. Bard, Inc.
    Inventor: Himanshu M. Ranpura
  • Patent number: 8311611
    Abstract: A system can be used to navigate or guide an instrument or device into an anatomy of a patient. The navigation can occur with the use of image data acquired of the patient. The image data can be registered to the patient space for navigation. Registration can occur more than once to increase efficiency and speed of the procedure.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: November 13, 2012
    Assignee: Medtronic, Inc.
    Inventors: Andrew N. Csavoy, Matthew S. Solar, Jeffrey M. Waynik, Mark S. Freas
  • Patent number: 8306602
    Abstract: These are site marking devices for marking a selected site within tissue of a patient. More particularly, the devices include an elongated body of gel and a metallic band disposed at least partially surrounding the body of gel. The body of gel is recognizably artificial when the marker is subject to ultrasound or x-ray imaging. Therefore, it is readily distinguishable from biological features within the tissue site.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 6, 2012
    Assignee: Devicor Medical Products, Inc.
    Inventors: D. Laksen Sirimanne, Douglas S. Sutton, Natalie V. Fawzi, Gail Lebovic
  • Publication number: 20120259203
    Abstract: Devices that provide an accurate needle injection depth by way of a sheath covered flexible injection needle that prevents accidental piercing, permits easy unsheathing and re-sheathing of the needle, and permits tactile feedback and direct or indirect visualization to confirm proper needle injection depth are illustrated.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Inventors: Paul David Devereux, Shay Joseph Lavelle, Therese Elizabeth Fitzgibbon, Ciarán Toomey
  • Publication number: 20120259204
    Abstract: The present invention relates to a device and a method for determining the position of an instrument with respect to medical images of a body. The device comprises (1) a calibration support comprising a set of fiducial markers visible on medical images and fixed to the skin of a body, (2) at least one micro-camera providing video images and mounted on the calibration support in a known position, and (3) a processing unit connected to the micro-cameras and configured to process the video images from said micro-cameras to determine the position of the instrument with respect to medical images.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Applicant: IMACTIS
    Inventors: Lionel CARRAT, Stéphanie LAVALLEE
  • Patent number: 8280486
    Abstract: A site marker is provided that includes a generally hollow body defining a cavity. At least one marker element is captured within the cavity but is able to move within the cavity. The capturing prevents migration of the marker within a body. The site marker is formed into a predeployment configuration whereby the site marker is compressed into a predetermined size and shape to as to be readily positionable within a deployment device. The site marker expands from the predeployment position to a post deployment configuration upon insertion into the body.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: October 2, 2012
    Assignee: Suros Surgical Systems, Inc.
    Inventors: Michael E. Miller, Michael Hoffa, Joseph L. Mark, Zachary R. Nicoson
  • Publication number: 20120238864
    Abstract: A method includes providing a patch including: a flexible base layer that is mountable on and substantially conformable to a patient's body surface, the base layer having opposed upper and lower primary surfaces; a flexible substrate that is releasably attached to the upper primary surface of the base layer and substantially conformable to the patient's body surface; and at least one MRI-visible fiducial element defined by or secured to the flexible substrate. The method further includes: securing the base layer to the body surface to mount the patch on the body surface such that the flexible substrate conforms to the body surface; MRI scanning the patient with the patch on the body surface to generate corresponding image data; identifying a physical location on the body surface using the image data; and removing the flexible substrate from the base layer.
    Type: Application
    Filed: April 30, 2012
    Publication date: September 20, 2012
    Inventors: Peter Piferi, Raffaele Mazzei, Alex Diener, Brady Steele
  • Publication number: 20120232379
    Abstract: A system and method for regression-based segmentation of the mitral valve in 2D+t cardiac magnetic resonance (CMR) slices is disclosed. The 2D+t CMR slices are acquired according to a mitral valve-specific acquisition protocol introduced herein. A set of mitral valve landmarks is detected in each 2D CMR slice and mitral valve contours are estimated in each 2D CMR slice based on the detected landmarks. A full mitral valve model is reconstructed from the mitral valve contours estimated in the 2D CMR slices using a trained regression model. Each 2D CMR slice may be a cine image acquired over a full cardiac cycle. In this case, the segmentation method reconstructs a patient-specific 4D dynamic mitral valve model from the 2D+t CMR image data.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: Siemens Corporation
    Inventors: Razvan Ioan Ionasec, Dime Vitanovski, Alexey Tsymbal, Gareth Funka-Lea, Dorin Comaniciu, Andreas Greiser, Edgar Mueller
  • Publication number: 20120226138
    Abstract: Disclosed herein are methods for identifying and targeting brain regions and brain structures. In one embodiment, a method of identifying a brain structure in a patient comprises imaging a brain region using Diffusion Tensor Imaging MRI to identify a nerve tract, following the nerve tract to a first brain structure, and identifying the first brain structure based on the location and orientation of the nerve tract.
    Type: Application
    Filed: July 21, 2010
    Publication date: September 6, 2012
    Applicants: United States Government Dept of Veterans Affairs, The regents of the University of California
    Inventors: Antonio Alfonso Ferreira DeSalles, Alejandro Covalin
  • Patent number: 8260397
    Abstract: In a method to determine a kidney function parameter of kidneys of an examination person with the aid of magnetic resonance tomography, at least one magnetic resonance measurement is implemented for an examination region of the examination person that comprises a urinary bladder of the examination person, to acquire magnetic resonance data from the examination region that include at least image data. The concentration of a urophanic substance in the urinary bladder of the examination person is automatically determined based on the acquired magnetic resonance data. A volume of the urinary bladder is automatically determined based on the acquired image data. A kidney function parameter of the kidneys of the examination person is automatically determined on the basis of the determined concentration of the urophanic substance in the urinary bladder and of the specific volume of the urinary bladder.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: September 4, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Ruff, Stefan Roell, Sebastian Schmidt
  • Publication number: 20120215094
    Abstract: Devices, systems, and methods for catheterization through angionavigation, cardionavigation, or brain navigation to diagnose or treat diseased areas through direct imaging using tracking, such as radiofrequency, infrared, or ultrasound tracking, of the catheter through the patient's vascular anatomy. A steerable catheter with six degrees of freedom having at least a camera and fiber optic bundle, and one or more active or passive electromagnetic tracking sensors located on the catheter is guided through the vascular system under direct imaging. The direct imaging can be assisted with at least one of MRA imaging, CT angiography imaging, or 3DRA imaging as the roadmap acquired prior to or during 3D stereoangiovision. The system comprises RF transceivers to provide positioning information from the sensors, a processor executing navigation software to fuse the tracking information from the tracking sensors with the imaging roadmap, and a display to display the location of the catheter on the roadmap.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicant: VOXEL RAD, LTD.
    Inventors: Javad Rahimian, Mohammad Shenasa
  • Publication number: 20120209106
    Abstract: A system for providing visual three dimensional assistance to a user during a medical procedure involving a soft organ. The system and method provide visual assistance to a user during a medical procedure involving a soft organ. The system and method utilize a processor for generating an image of the soft organ, a surgical instrument tracker for tracking a surgical instrument during the medical procedure, and a display in communication with the processor and the surgical instrument tracker for visually displaying in three dimensions, the image of the soft organ and the surgical instrument in relation to the soft organ.
    Type: Application
    Filed: November 23, 2011
    Publication date: August 16, 2012
    Applicants: EDDA TECHNOLOGY (SUZHOU) LTD., EDDA TECHNOLOGY, INC.
    Inventors: Cheng-Chung Liang, Li Fan, Jian-Zhong Qian, Xiaolan Zeng, Xin Dou, Changbo Yang, Guo-Qing Wei
  • Publication number: 20120203099
    Abstract: In a method and a magnetic resonance system to show an object that is introduced into an examination region, the object having a known chemical shift relative to tissue that is predominant in the examination region, magnetic resonance signals are acquired from the examination region of the subject with the introduced object therein, and the different chemical shift of the introduced object and of the predominant tissue is computationally used in a processor to calculate, from the acquired magnetic resonance signals, a localization image in which substantially only the introduced object is shown.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 9, 2012
    Inventors: Andre De Oliveira, Stephan Kannengiesser, Martin Requardt