Low Pressure Cold Trap Process And Apparatus Patents (Class 62/55.5)
  • Publication number: 20070256429
    Abstract: A cryopump and a regenerating method of the cryopump whereby temperatures of a first stage and a second stage can be securely increased to target temperatures and time required for regenerating can be shortened are provided. At the time of regenerating, the temperature of the second stage cooling stage is controlled based on the temperature detected by the second temperature detection part. In the case where the temperature of the first stage cooling stage reaches the limiting temperature, namely critical temperature, of the first stage displacer, the rotation in the reverse direction of the reversible motor is controlled or stopped and thereby the regenerating process is stopped for a while.
    Type: Application
    Filed: November 15, 2006
    Publication date: November 8, 2007
    Applicant: Sumitomo Heavy Industries, LTD.
    Inventor: Tsutomu Fukuda
  • Patent number: 7287390
    Abstract: Hyperpolarizers for producing polarized noble gases can include: (a) a control module configured to direct the operation of a hyperpolarizer to produce polarized noble gas via spin-exchange interactions between a noble gas and an alkali metal; (b) at least one optical pumping module including an optical pumping cell operably associated with the control module; (c) a dispensing system operably associated with the control module and the optical pumping module to dispense meted volumes of polarized gas from the hyperpolarizer; and (d) a fluid distribution system operably associated with the control module, the optical pumping module, and the dispensing system, such that, in response to commands transmitted from the control module, the fluid distribution system operates to automatically direct purge gas into and out of a gas travel path that extends from the control module to the optical pumping cell prior to commencing the spin-exchange interactions in the optical pumping cell, then to receive unpolarized gas an
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: October 30, 2007
    Assignee: Medi-Physics, Inc.
    Inventor: Kenneth Bolam
  • Patent number: 7287391
    Abstract: Modular expandable hyperpolarizers include a central control module and at least one optical pumping module that can be expandable to a plurality of optical pumping modules that can be separately operated depending on the capacity demands at the production site (hospital, clinic and the like). Methods for producing blended polarized gas products include introducing a pre-packaged pre-mixed amount of a polarizer-ready blend of unpolarized gas. Methods for producing the polarized gas can be carried out at the point of use site and the production run according to patient load. Other methods consider the patient load and automatically schedule the hyperpolarizer to yield the desired polarized gas doses to support the patient and/or MRI/NMR equipment schedule.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: October 30, 2007
    Assignee: Medi-Physics, Inc.
    Inventor: Kenneth Bolam
  • Patent number: 7228687
    Abstract: A valve device, according to the invention, for connecting to a cryopump, wherein the valve device comprises a body with a through-channel and a connection flange at one end of the through-channel for connecting to a backing pump connection flange of the cryopump; a pressure relief valve which opens when an overpressure in the through-channel exceeds a limiting valve and which lets this overpressure out of the through-channel; a purge gas line in which a purge gas valve is arranged and which serves to supply a purge gas to a supply line of the cryopump during a regeneration process of the cryopump; wherein an end portion of the purge gas line by which the purge gas line can be connected to the supply line of the cryopump runs within the through-channel to the area of the end of the through-channel situated in the connection flange. A pump arrangement according to the invention is also disclosed.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 12, 2007
    Assignee: VAT Holding AG
    Inventor: Florian Ehrne
  • Patent number: 7217306
    Abstract: A continuous processing trap apparatus is capable of increasing the trapping efficiency while maintaining conductance required by a vacuum chamber. The trap apparatus includes an exhaust passage for evacuating a hermetically sealed chamber by a vacuum pump, a hermetically sealed trapping and regenerating casing extending across the exhaust passage and a regenerating passage adjacent to the exhaust passage, and a trap unit movably housed in the trapping and regenerating casing for selective movement between a trapping position connected to the exhaust passage and a regenerating position connected to the regenerating passage. The trap apparatus further includes valve bodies disposed one on each side of the trap unit and supporting seals on outer circumferential surfaces thereof for sealing the exhaust passage and the regenerating passage from each other, and a monitoring mechanism for monitoring whether the seals are functioning normally.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: May 15, 2007
    Assignee: Ebara Corporation
    Inventors: Norihiko Nomura, Nobuharu Noji, Kiyoshi Yanagisawa
  • Patent number: 7201004
    Abstract: The pulse tubes (165, 175) and regenerators (160, 170) contained within a cryopump housing (210) are arranged in a way that facilitates the fabrication and installation of the cryopanels (265). The pulse tubes and regenerators are located in a common plane in the center of the cryopump housing and the cold (second stage) panels (265) that are pitched parallel to the plane with the tubes.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: April 10, 2007
    Assignees: SHI-APD Cryogenics, Inc., Sumitomo Heavy Industries, Ltd.
    Inventor: Ralph C. Longsworth
  • Patent number: 7194867
    Abstract: A single ducted valve assembly provides an integrated cryopump valve having a purge valve port connecting the assembly to a cryopump with a coaxial connection having an inner duct and an outer duct. A pressurized gas interface connects a pressurized gas source to the cryopump through the inner duct. A rough valve port can connect the outer duct of the assembly to a rough vacuum pump; and a relief valve port can connect the outer duct of the assembly to an exhaust stack.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: March 27, 2007
    Assignee: Brooks Automation, Inc.
    Inventors: Allen J. Bartlett, Gary S. Ash, Brian Thompson, Mark A. Stira
  • Patent number: 7165406
    Abstract: An integrated cryopump and 2 stage pulse tube refrigeration system (100) comprising a cryopump, a compressor for a pulse tube refrigerator, a pulse tube refrigerator located within the vacuum chamber of the cryopump where the hot ends of the pulse tubes (165,175) are connected to each other through a buffer volume (180), are integral to the cryopump vacuum chamber hosing, and a buffer volume (180) is connected to the hot ends (117,119) of the pulse tubes (165,175) through flow restrictors (145,150).
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: January 23, 2007
    Assignee: SHI-APD Cryogenics, Inc.
    Inventor: Ralph C. Longsworth
  • Patent number: 7155919
    Abstract: An electronic controller maintains the operating temperature of a cryopump by controlling a heater coupled to the cryopump. The heater is coupled to a cryopumping surface of the cryopump. The controller can control the operation of the heater in response to feedback from temperature sensors coupled to the cryopump. The controller can cause the heater to shut-off if a temperature sensor reads out of its normal temperature range.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: January 2, 2007
    Assignee: Brooks Automation, Inc.
    Inventors: Peter W. Gaudet, Carol Olsen, legal representative, Michael J. Eacobacci, Olive Harvell, legal representative, Donald A. Olsen, deceased, John T. Harvell, deceased
  • Patent number: 7114341
    Abstract: Disclosed is a two-stage pulse tube cryopump cooling system in which the pulse tubes and valves are inline, with the hot ends of the pulse tubes at the top and the valve mechanism is at the bottom and the hot ends and buffer volume are cooled by an inline coolant line from the compressor input to the compressor output and attached in heat exchange relationship with the buffer volume.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: October 3, 2006
    Assignees: SHI-APD Cryogenics, Inc., Sumitomo Heavy Industries, Ltd.
    Inventor: Jin Lin Gao
  • Patent number: 7044997
    Abstract: A trap device including at least one substance delivery element for introducing a substance therein is disclosed. The delivered substance may influence the nature of deposits that have formed within the trap device, may influence the formation of deposits within the trap device, or may cause a precipitate to form. Deposit interaction elements may be employed to influence the distribution or redistribution of deposits within the trap device. Deposit interaction elements may effect thermal conditions, introduce substances, or physically interact with deposits within the trap device. Further, a storage region within the trap device may be used to accumulate deposits. In one embodiment, a substantially continuous path through the trap device may be maintained or preserved so that deposits form within the trap device except substantially along the path. The present invention also encompasses a method of operation of a trap device as well as a system incorporating same.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: May 16, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Allen P. Mardian, Philip H. Campbell
  • Patent number: 7037083
    Abstract: A vacuum conduit connected to a vacuum pump has a shield surface which absorbs radiation to reduce the total radiation falling on the vacuum pump. The vacuum system includes the vacuum conduit connected between a process chamber and the vacuum pump and a surface treatment along at least a portion of the shield surface adapted to absorb radiation. Since the treatment is on the interior surface of the vacuum conduit and does not extend into the center of the conduit, gaseous flow to the pump is not impeded. In this manner radiation entering the vacuum pump and falling on the cryogenic array is reduced without impeding gaseous flow to the cryogenic surface. The system therefore minimizes the radiation load on the cryogenic array in the vacuum pump without impeding the gaseous flow through the vacuum pump.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: May 2, 2006
    Assignee: Brooks Automation, Inc.
    Inventors: James A. O'Neil, Gary S. Ash
  • Patent number: 6920763
    Abstract: An electronic controller is integral with a cryopump and provides an offline solution for purging a cryopump and an exhaust line during unsafe conditions. The electronic controller is responsible for controlling the opening and closing of purge, exhaust purge and gate valves coupled to the cryopump. The electronic controller can preempt any attempts from other systems to control these valves during unsafe conditions. An unsafe condition can be a power failure in the cryopump, a dangerous temperature in the cryopump or a temperature sensing diode that is not operating properly. When an unsafe condition is determined, the exhaust purge valve is opened and the gate valve closed, while the opening of a purge valve may be delayed for a safe period of time. If the unsafe condition still exists when the safe period of time elapses, the purge valve is allowed to open. A fail-safe purge valve release and time delay mechanism can be used to ensure that the purge valve opens after the period of time elapses.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: July 26, 2005
    Assignee: Helix Technology Corporation
    Inventors: Paul E. Amundsen, Maureen Buonpane, Doug Andrews, Jordan Jacobs
  • Patent number: 6907740
    Abstract: An apparatus and method for charging a gas storage and dispensing vessel with gas to a predetermined pressure level, e.g., a gas to be employed in a semiconductor manufacturing operation such as a hydride, halide or organometallic reagent gas. In the gas charging, a source gas is liquefied, e.g., in a cryotrap, and then gasified in closed flow communication with the vessel to introduce the gas thereinto, and such liquefaction/gasification steps are carried out alternatively and repetitively, to charge the vessel in a step-wise, progressive fashion with gas, until a full fill state is achieved, with the contained gas at the predetermined pressure level.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: June 21, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Glenn M. Tom
  • Patent number: 6895766
    Abstract: An electronic controller is integral with a cryopump and provides an offline solution for purging a cryopump and an exhaust line during unsafe conditions. The electronic controller is responsible for controlling the opening and closing of purge, exhaust purge and gate valves coupled to the cryopump. The electronic controller can preempt any attempts from other systems to control these valves during unsafe conditions. An unsafe condition can be a power failure in the cryopump, a dangerous temperature in the cryopump or a temperature sensing diode that is not operating properly. When an unsafe condition is determined, the exhaust purge valve is opened and the gate valve closed, while the opening of a purge valve may be delayed for a safe period of time. If the unsafe condition still exists when the safe period of time elapses, the purge valve is allowed to open. A fail-safe purge valve release and time delay mechanism can be used to ensure that the purge valve opens after the period of time elapses.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: May 24, 2005
    Assignee: Helix Technology Corporation
    Inventors: Paul E. Amundsen, Maureen Buonpane, Doug Andrews, Jordan Jacobs
  • Publication number: 20040261425
    Abstract: An electronic controller is integral with a cryopump and provides an offline solution for purging a cryopump and an exhaust line during unsafe conditions. The electronic controller is responsible for controlling the opening and closing of purge, exhaust purge and gate valves coupled to the cryopump. The electronic controller can preempt any attempts from other systems to control these valves during unsafe conditions. An unsafe condition can be a power failure in the cryopump, a dangerous temperature in the cryopump or a temperature sensing diode that is not operating properly. When an unsafe condition is determined, the exhaust purge valve is opened and the gate valve closed, while the opening of a purge valve may be delayed for a safe period of time. If the unsafe condition still exists when the safe period of time elapses, the purge valve is allowed to open.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Applicant: Helix Technology Corporation
    Inventors: Paul E. Amundsen, Maureen Buonpane, Doug Andrews, Jordan Jacobs
  • Publication number: 20040261426
    Abstract: An electronic controller is integral with a cryopump and provides an offline solution for purging a cryopump and an exhaust line during unsafe conditions. The electronic controller is responsible for controlling the opening and closing of purge, exhaust purge and gate valves coupled to the cryopump. The electronic controller can preempt any attempts from other systems to control these valves during unsafe conditions. An unsafe condition can be a power failure in the cryopump, a dangerous temperature in the cryopump or a temperature sensing diode that is not operating properly. When an unsafe condition is determined, the exhaust purge valve is opened and the gate valve closed, while the opening of a purge valve may be delayed for a safe period of time. If the unsafe condition still exists when the safe period of time elapses, the purge valve is allowed to open.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Applicant: Helix Technology Corporation
    Inventors: Paul E. Amundsen, Maureen Buonpane, Doug Andrews, Jordan Jacobs
  • Publication number: 20040261423
    Abstract: An integrated cryopump and 2 stage pulse tube refrigeration system (100) comprising a cryopump, a compressor for a pulse tube refrigerator, a pulse tube refrigerator located within the vacuum chamber of the cryopump where the hot ends of the pulse tubes (165,175) are connected to each other through a buffer volume (180), are integral to the cryopump vacuum chamber hosing, and a buffer volume (180) is connected to the hot ends (117,119) of the pulse tubes (165,175) through flow restrictors (145,150).
    Type: Application
    Filed: July 2, 2004
    Publication date: December 30, 2004
    Inventor: Ralph C Longsworth
  • Publication number: 20040261424
    Abstract: An electronic controller is integral with a cryopump and provides an offline solution for purging a cryopump and an exhaust line during unsafe conditions. The electronic controller is responsible for controlling the opening and closing of purge, exhaust purge and gate valves coupled to the cryopump. The electronic controller can preempt any attempts from other systems to control these valves during unsafe conditions. An unsafe condition can be a power failure in the cryopump, a dangerous temperature in the cryopump or a temperature sensing diode that is not operating properly. When an unsafe condition is determined, the exhaust purge valve is opened and the gate valve closed, while the opening of a purge valve may be delayed for a safe period of time. If the unsafe condition still exists when the safe period of time elapses, the purge valve is allowed to open.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Applicant: Helix Technology Corporation
    Inventors: Paul E. Amundsen, Maureen Buonpane, Doug Andrews
  • Patent number: 6835221
    Abstract: The present invention has an object to improve the efficiency of collection of solidification constituents and solids in exhaust gas and to prevent early blockage of the filter without damaging the vacuum pump. In an exhaust path 48a, a vacuum pump and exhaust gas filtration device are provided. This exhaust gas filtration device is constituted by a trap device, pre-filter and filter. The pre-filter reduces the exhaust gas flow rate flowing through the interior of the exhaust path by controlling the exhaust gas flow path in the vessel. The aforesaid exhaust path is constituted by connecting this vacuum pump, trap device, pre-filter and filter which are arranged in this order from the side of airtight vessel and connected through piping if required.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: December 28, 2004
    Assignee: Anelva Corporation
    Inventors: Toshihiro Rikyuu, Keisuke Nagakura
  • Patent number: 6830600
    Abstract: A method for preventing migration of lubrication molecules into adjacent process chambers while coating a thin layer of lubricant over a storage surface of a disc using a vapor lubrication process. The method includes trapping the lubrication molecules that are not deposited onto the storage surface of the discs during the vapor lubrication process by using one or more cold traps including cold trapping surfaces in a vapor lubrication station.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 14, 2004
    Assignee: Seagate Technology LLC
    Inventors: Paul Stephen McLeod, Michael Joseph Stirniman, Jing Gui
  • Patent number: 6831022
    Abstract: A system, apparatus and/or method is provided for removing water vapor from a wafer processing chamber generated as a byproduct of wafer processing. A water vapor trap is used to collect the water vapor byproduct from the processing chamber interior. The water vapor trap has at least a portion thereof in communication with an interior of the processing chamber for collection of the water vapor and another portion thereof in communication with an exterior of the processing chamber. The portions are movable with respect to the interior and exterior of the processing chamber such that the portions may switch places. This allows the processing chamber to be in at least a substantially continuous mode of operation while still providing for the removal of water vapor byproduct via the water vapor trap. The “used” portion of the water vapor trap is regenerated while the “clean” portion is collecting water vapor.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: December 14, 2004
    Assignee: LSI Logic Corporation
    Inventors: Robert D. Broyles, Michael J. Berman
  • Patent number: 6814812
    Abstract: A double acting cold trap equipped with a set of exhaust gas condensing fins and a set of exhaust gas condensing plates is disclosed. The invention also discloses a double acting cold trap that incorporates a deflecting plate to direct the exhaust gases over the condensing fins and plates in a serial fashion. This increases the efficiency of the collection of unwanted particles.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: November 9, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wei Hua Tong, Chen Yu Yang, Zhang Jian, Qian Wu Quan
  • Publication number: 20040194477
    Abstract: An electronic controller is used to control a vacuum gauge in a vacuum system. The electronic controller may be coupled to a vacuum pump in the vacuum system. Preferably, the vacuum pump is a cryopump. The electronic controller determines whether there is a potentially dangerous condition present in the vacuum system. A potentially dangerous condition may be present, for example, if there is a sufficient amount of gas in the vacuum pump to ignite. If the vacuum pump is filed with inert gas, such as nitrogen, then the potentially dangerous condition is not present. The potentially dangerous condition is present when the temperature of the vacuum pump is above a temperature setpoint, such as 20K. The electronic controller responds to a potentially dangerous condition by preventing the vacuum gauge from being turned on.
    Type: Application
    Filed: December 31, 2003
    Publication date: October 7, 2004
    Applicant: Helix Technology Corporation
    Inventors: Peter W. Gaudet, Donald A. Olsen, Michael J. Eacobacci, Carol Olsen, John T. Harvell, Olive Harvell
  • Publication number: 20040182091
    Abstract: A superconducting machine includes a superconductive device and a vacuum enclosure containing and thermally insulating the superconductive device. A cold-trap is configured to condense gases generated within the vacuum enclosure, and a coolant circulation system is adapted to force flow of a cryogen to and from the superconductive device and the cold-trap. A cryogenic cooling system is configured to cool the cryogen in the coolant circulation system upstream of the superconductive device. A vacuum retention method, for a high-temperature superconductive HTS device, includes applying vacuum to the HTS device to thermally insulate the HTS device, condensing gases generated around the HTS device using a cold-trap, flowing a cryogen to and from the HTS device, and flowing the cryogen to and from the cold-trap.
    Type: Application
    Filed: January 27, 2004
    Publication date: September 23, 2004
    Inventors: Yu Wang, Robert Adolph Ackermann
  • Publication number: 20040169515
    Abstract: A cryostat is formed into a donut form, where a cylindrical or a square concave is formed in the center of the cryostat of the superconductive magnet apparatus for an open type MRI apparatus, and the cryo-compressor is disposed in the concave.
    Type: Application
    Filed: February 26, 2004
    Publication date: September 2, 2004
    Inventors: Yasunori Koga, Hiroyuki Watanabe
  • Patent number: 6755028
    Abstract: In a cryogenic vacuum pump, after determining that a power fail recovery mode is on, and that the temperature is below a setpoint, the cryopump is automatically cooled. If the power fail recovery mode is on, and the temperature is above the setpoint, a regeneration cycle is started automatically. If the power fail recovery mode is off, the cryopump may be maintained in an off state. When a command to turn on a pressure sensing thermocouple (TC) gauge is received, the TC gauge is turned on only if there is not a sufficient amount of gas to ignite. When a command to turn on a roughing valve is received, an additional command must be received before the roughing valve is turned on. When a temperature-sensing diode is faulty, temperature control is automatically turned off. During a regeneration cycle, a purge test is performed. If the purge test passes, heaters are turned on. If the purge test fails, the heaters are turned on only if the temperature reaches a threshold within a predetermined period.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: June 29, 2004
    Assignee: Helix Technology Corporation
    Inventors: Peter W. Gaudet, Donald A. Olsen, Michael J. Eacobacci
  • Patent number: 6746516
    Abstract: An air treatment system including an exhaust including an exhaust annulus defined by an inner exhaust wall, an outer exhaust wall circumscribing the inner wall, and a pressurized annulus between the inner and outer walls, and at least one condenser suspended within the exhaust annulus, where the at least one condenser includes a cooling fluid therein.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: June 8, 2004
    Inventor: James A. Titmas
  • Patent number: 6718775
    Abstract: An integrated phase separator for use in an ultra high vacuum system, for example, a molecular beam epitaxy system, is described. The vacuum chamber has a cryogenic panel disposed therein. The cryogenic panel includes a cryogenic shroud region and a phase separator region. Liquid nitrogen is introduced into the cryogenic panel via an inlet line. As the liquid nitrogen warms and vaporizes, nitrogen vapor rises within the shroud. The phase separator region within the cryogenic panel provides a near atmospheric pressure vapor barrier over the liquid nitrogen so that the nitrogen vapor may escape smoothly through the outlet of the panel, without forming gas bursts. Also, the phase separator region is vacuum jacketed to prevent cryogenic shroud surface temperature changes due to variations in liquid nitrogen levels, thereby increasing the cryogenic shroud's pumping stability. In one embodiment, used in molecular beam epitaxy (MBE), the cryopanel is divided into first and second cooling chambers.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: April 13, 2004
    Assignee: Applied EPI, Inc.
    Inventors: Paul E. Colombo, Scott Wayne Priddy
  • Patent number: 6708503
    Abstract: A superconducting machine includes a superconductive device and a vacuum enclosure containing and thermally insulating the superconductive device. A cold-trap is configured to condense gases generated within the vacuum enclosure, and a coolant circulation system is adapted to force flow of a cryogen to and from the superconductive device and the cold-trap. A cryogenic cooling system is configured to cool the cryogen in the coolant circulation system upstream of the superconductive device. A vacuum retention method, for a high-temperature superconductive HTS device, includes applying vacuum to the HTS device to thermally insulate the HTS device, condensing gases generated around the HTS device using a cold-trap, flowing a cryogen to and from the HTS device, and flowing the cryogen to and from the cold-trap.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: March 23, 2004
    Assignee: General Electric Company
    Inventors: Yu Wang, Robert Adolph Ackermann
  • Patent number: 6688116
    Abstract: An ion beam producing device employing a refrigeration system to provide the cooling for a superconducting compression magnet at a trap core of an electron beam ion trap (EBIT) without the use of cryogenic liquid gases. The elimination of cryogenic cooling gases, such as liquid helium, is effectuated by the incorporation of cryo-refrigerators having highly thermally conductive cryo-heads, and a super-conducting, solid lead arrangement for energizing the compression magnet, the leads producing little or no heat within the cold shield. The reduction or elimination of use of liquid cooling-gases significantly reduces the size and operating cost of the electron beam source/trap system. A magnetic field line guide-field reduces magnet field-line interference otherwise risked by the reduction in size of the electron beam device.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: February 10, 2004
    Assignee: Physics & Technology, LLC
    Inventors: Dieter H. G. Schneider, Joseph W. McDonald
  • Publication number: 20040020219
    Abstract: An integrated phase separator for use in an ultra high vacuum system, for example, a molecular beam epitaxy system, is described. The vacuum chamber has a cryogenic panel disposed therein. The cryogenic panel includes a cryogenic shroud region and a phase separator region. Liquid nitrogen is introduced into the cryogenic panel via an inlet line. As the liquid nitrogen warms and vaporizes, nitrogen vapor rises within the shroud. The phase separator region within the cryogenic panel provides a near atmospheric pressure vapor barrier over the liquid nitrogen so that the nitrogen vapor may escape smoothly through the outlet of the panel, without forming gas bursts. Also, the phase separator region is vacuum jacketed to prevent cryogenic shroud surface temperature changes due to variations in liquid nitrogen levels, thereby increasing the cryogenic shroud's pumping stability. In one embodiment, used in molecular beam epitaxy (MBE), the cryopanel is divided into first and second cooling chambers.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Applicant: Applied EPI, Inc.
    Inventors: Paul E. Colombo, Scott Wayne Priddy
  • Publication number: 20030226366
    Abstract: A double acting cold trap equipped with a set of exhaust gas condensing fins and a set of exhaust gas condensing plates is disclosed. The invention also discloses a double acting cold trap that incorporates a deflecting plate to direct the exhaust gases over the condensing fins and plates in a serial fashion. This increases the efficiency of the collection of unwanted particles.
    Type: Application
    Filed: January 9, 2003
    Publication date: December 11, 2003
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Wei Hua Tong, Chen Yu Yang, Zhang Jian, Qian Wu Quan
  • Patent number: 6655154
    Abstract: An operation method and an operation apparatus for multi-system refrigerators, and a refrigerating apparatus. When gas compressed by a single compressor is supplied to a plurality of refrigerators through valves provided for the individual refrigerators, the opening/closing frequencies of the individual valves are slightly shifted to one another. As a result, with a simple constitution, the performances of the individual refrigerators are balanced without observing valve timings.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: December 2, 2003
    Assignees: Sumitomo Heavy Industries, LTD, Anelva Corporation
    Inventors: Shin Funayama, Hidekazu Tanaka, Hisashi Yamamoto, Kazutoshi Aoki
  • Patent number: 6630411
    Abstract: A system, apparatus and/or method is provided for removing water vapor from a wafer processing chamber generated as a byproduct of wafer processing. A water vapor trap is used to collect the water vapor byproduct from the processing chamber interior. The water vapor trap has at least a portion thereof in communication with an interior of the processing chamber for collection of the water vapor and another portion thereof in communication with an exterior of the processing chamber. The portions are movable with respect to the interior and exterior of the processing chamber such that the portions may switch places. This allows the processing chamber to be in at least a substantially continuous mode of operation while still providing for the removal of water vapor byproduct via the water vapor trap. The “used” portion of the water vapor trap is regenerated while the “clean” portion is collecting water vapor.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: October 7, 2003
    Assignee: LSI Logic Corporation
    Inventors: Robert D. Broyles, Michael J. Berman
  • Patent number: 6620250
    Abstract: A method and apparatus for shielding a device, such as a pump, from a process chamber of a semiconductor wafer processing system. The apparatus comprises a shield connected to a mounting portion. The mounting portion has a fluid passage wherein the temperature of the apparatus is regulated by flowing fluid through the passage.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 16, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Thomas B. Brezoczky, Randy Schmieding, Gene Y. Kohara
  • Publication number: 20030154728
    Abstract: The invention relates to a device for thermally stabilizing an object (20) to be cooled to a temperature of the order of 6 to 25 K by circulating a fluid, characterized in that it comprises:
    Type: Application
    Filed: December 3, 2002
    Publication date: August 21, 2003
    Inventors: Jean-Paul Perin, Olivier Chanal
  • Publication number: 20030150220
    Abstract: A high throughput continuous cryopump is provided. The continuous cryopump consists of a cryocondensation cryopump employed to pump a process gas. The gas is pumped by condensing and freezing the gas onto a refrigerated cryosurface contained in the pump chamber, thereby causing an ice layer to build up on the cryosurface. The continues cryopump also contains a mechanism to cut the ice layer into small pellets or chips. The ice chips removed from the ice layer are gathered and routed into a separate ice collection chamber by a funnel system. Periodically, the ice collection chamber is isolated from the cryopump chamber by an isolation valve and the ice chips in the collection chamber are melted (or evaporated) and removed from said collection chamber. The regeneration of the ice chips collected in the ice collection chamber which has a relatively small volume, can produce very large exhaust pressures, thereby allowing a relatively small auxiliary pump to evacuate the collection chamber.
    Type: Application
    Filed: December 9, 2002
    Publication date: August 14, 2003
    Inventor: Christopher Foster
  • Publication number: 20030108485
    Abstract: Modular expandable hyperpolarizers include a central control module and at least one optical pumping module that can be expandable to a plurality of optical pumping modules that can be separately operated depending on the capacity demands at the production site (hospital, clinic and the like). Methods for producing blended polarized gas products include introducing a pre-packaged pre-mixed amount of a polarizer-ready blend of unpolarized gas. Methods for producing the polarized gas can be carried out at the point of use site and the production run according to patient load. Other methods consider the patient load and automatically schedule the hyperpolarizer to yield the desired polarized gas doses to support the patient and/or MRI/NMR equipment schedule.
    Type: Application
    Filed: October 22, 2002
    Publication date: June 12, 2003
    Inventor: Kenneth Bolam
  • Patent number: 6550256
    Abstract: As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e−3 Torr at 150° K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: April 22, 2003
    Assignee: Southeastern Universities Research Assn.
    Inventor: Ganapati Rao Myneni
  • Publication number: 20030051487
    Abstract: In a cryogenic vacuum pump, after determining that a power fail recovery mode is on, and that the temperature is below a setpoint, the cryopump is automatically cooled. If the power fail recovery mode is on, and the temperature is above the setpoint, a regeneration cycle is started automatically. If the power fail recovery mode is off, the cryopump may be maintained in an off state. When a command to turn on a pressure sensing thermocouple (TC) gauge is received, the TC gauge is turned on only if there is not a sufficient amount of gas to ignite. When a command to turn on a roughing valve is received, an additional command must be received before the roughing valve is turned on. When a temperature-sensing diode is faulty, temperature control is automatically turned off. During a regeneration cycle, a purge test is performed. If the purge test passes, heaters are turned on. If the purge test fails, the heaters are turned on only if the temperature reaches a threshold within a predetermined period.
    Type: Application
    Filed: August 20, 2002
    Publication date: March 20, 2003
    Applicant: Helix Technology Corporation
    Inventors: Peter W. Gaudet, Donald A. Olsen, Carol Olsen, Michael J. Eacobacci
  • Publication number: 20030024252
    Abstract: An operation method and an operation apparatus for multi-system refrigerators, and a refrigerating apparatus. When gas compressed by a single compressor is supplied to a plurality of refrigerators through valves provided for the individual refrigerators, the opening/closing frequencies of the individual valves are slightly shifted to one another. As a result, with a simple constitution, the performances of the individual refrigerators are balanced without observing valve timings.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 6, 2003
    Inventors: Shin Funayama, Hidekazu Tanaka, Hisashi Yamamoto, Kazutoshi Aoki
  • Patent number: 6510697
    Abstract: In a power failure recovery, the operating state before a power failure and present conditions of a cryopump are determined to initiate a regeneration or startup process. Where the refrigerator was operating before power failure, it is turned on during recovery to condense gases in the cryopump. A startup process is initiated where the cryopump was in a startup process before the power failure and present conditions of the cryopump indicate that the cryopump is sufficiently empty or clean. If the operating state and present conditions indicate that a corrosive or hazardous liquid remains in the cryopump, a regeneration process is initiated. If the cryopump was in a shutdown process before the power failure, the cryopanel of the cryopump is refrigerated to a temperature at which gases sublimate from the cryopanel. The temperature of the cryopanel is then maintained until the gases are removed.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: January 28, 2003
    Assignee: Helix Technology Corporation
    Inventors: Maureen C. Buonpane, Philip D. Acomb, Brian D. Foley, Michael J. Eacobacci, Jr., Stephen J. Yamartino, Robert M. Patterson
  • Publication number: 20030014985
    Abstract: A helium management control system for controlling the helium refrigerant supply from a common manifold supplies a plurality of cryogenic refrigerators with an appropriate helium supply. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators depending on the computed aggregate cooling demand of all of the cryogenic refrigerators. An appropriate supply of helium is distributed to each cryopump by sensing excess and sparse helium refrigerant and redistributing refrigerant accordingly. If the total refrigeration supply exceeds the total refrigerant demand, or consumption, excess refrigerant is directed to cryogenic refrigerators which can utilize the excess helium to complete a current cooling function more quickly.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 23, 2003
    Applicant: Helix Technology Corporation
    Inventors: Paul E. Dresens, Gary S. Ash, Allen J. Bartlett, Bruce R. Andeen, Y. Roberto Than, Joseph Chopy
  • Publication number: 20020184896
    Abstract: In a power failure recovery, the operating state before a power failure and present conditions of a cryopump are determined to initiate a regeneration or startup process. Where the refrigerator was operating before power failure, it is turned on during recovery to condense gases in the cryopump. A startup process is initiated where the cryopump was in a startup process before the power failure and present conditions of the cryopump indicate that the cryopump is sufficiently empty or clean. If the operating state and present conditions indicate that a corrosive or hazardous liquid remains in the cryopump, a regeneration process is initiated. If the cryopump was in a shutdown process before the power failure, the cryopanel of the cryopump is refrigerated to a temperature at which gases sublimate from the cryopanel. The temperature of the cryopanel is then maintained until the gases are removed.
    Type: Application
    Filed: June 7, 2001
    Publication date: December 12, 2002
    Applicant: Helix Technology Corporation
    Inventors: Maureen C. Buonpane, Philip D. Acomb, Brian F. Foley, Michael J. Eacobacci, Stephen J. Yamartino, Robert M. Patterson
  • Patent number: 6488745
    Abstract: A trap for condensable liquids, such as tantalum pentoxide, has a primary trapping chamber surrounding a secondary trapping chamber and a sump connected by a small enough opening to the primary or secondary chamber such that trapped liquid in the sump is effectively isolated from a gas flow through the primary and secondary chambers. Partitions and openings in the primary and secondary chambers enhance condensation while allowing condensed liquid flow that does not clog the primary and secondary chambers against the gas flow.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: December 3, 2002
    Assignee: MKS Instruments, Inc.
    Inventor: Youfan Gu
  • Patent number: 6484532
    Abstract: Hyperpolarizers which produce hyperpolarized noble gases include one or more on-board NMR monitoring coils configured to monitor the polarization level of the hyperpolarized gas at various production points in the polarized gas production cycle. A dual symmetry NMR coil is positioned adjacent the optical pumping cell and is in fluid communication with a secondary reservoir in fluid communication with the polarized gas dispensing or exit flow path. This can measure the post-thaw polarization of the gas “on-board” the polarizer. Alternately or additionally, a NMR monitoring coil is assembled to the exit port portion of the optical pumping cell to give a more reliable indication of the polarization level of the gas as it flows out of the gas optical pumping cell. Another NMR monitoring coil can be positioned in a cryogenic bath adjacent a quantity of frozen polarized 129Xe to determine the polarization level of the frozen gas.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: November 26, 2002
    Assignee: Medi-Physics, Inc.
    Inventor: Bastiaan Driehuys
  • Patent number: 6474080
    Abstract: A cryopump system includes an integral assembly having a refrigerator, cryopumping surfaces cooled by the refrigerator, a first electronic module for controlling the cryopump, and a second electronic module which is removably coupled to the first module. The second electronic module has a first surface abutting a complementary first surface of a housing of the first electronic module. Preferably, the first controller module has three orthogonal surfaces of approximately the same dimensions. Electronic modules can be removably coupled to each of the three surfaces. The cryopump system includes a module cap which is coupled to an end of an electronic module to shield electrical connections between two coupled electronic modules. The electronic modules comprise a channel of rectangular cross section having slots for mounting printed circuit boards.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: November 5, 2002
    Assignee: Helix Technology Corporation
    Inventors: John J. Varone, Daniel R. Jankins, Robert J. Lepofsky
  • Patent number: 6460351
    Abstract: A cryogenic vacuum pump includes, in an integral assembly, temperature sensors and heaters associated with the first and second stages of the cryopumping array, a roughing valve and a purge valve. An electronic module removably coupled in the assembly responds to all sensors and controls all operations of the cryopump including regeneration thereof. System parameters are stored in a nonvolatile memory in the module. Included in the regeneration procedures are an auto-zero of the pressure gauge, heating of the array throughout rough pumping, and a change in pressure rate test to determine stall in rough pumping. The electronic module also restarts the system after power failure, limits use of a pressure gauge to safe conditions, provides warnings before allowing opening of the valves while the cryopump is operating and stores sensor calibration information. Control through a control pad on the pump may be limited by a password requirement. Password override is also provided.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: October 8, 2002
    Assignee: Helix Technology Corporation
    Inventors: Peter W. Gaudet, Donald A. Olsen
  • Publication number: 20020104320
    Abstract: A cryogenic vacuum pump includes, in an integral assembly, temperature sensors and heaters associated with the first and second stages of the cryopumping array, a roughing valve and a purge valve. An electronic module removably coupled in the assembly responds to all sensors and controls all operations of the cryopump including regeneration thereof. System parameters are stored in a nonvolatile memory in the module. Included in the regeneration procedures are an auto-zero of the pressure gauge, heating of the array throughout rough pumping, and a change in pressure rate test to determine stall in rough pumping. The electronic module also restarts the system after power failure, limits use of a pressure gauge to safe conditions, provides warnings before allowing opening of the valves while the cryopump is operating and stores sensor calibration information. Control through a control pad on the pump may be limited by a password requirement. Password override is also provided.
    Type: Application
    Filed: October 15, 2001
    Publication date: August 8, 2002
    Applicant: Helix Technology Corporation
    Inventors: Peter W. Gaudet, Donald A. Olsen