And Regeneration Patents (Class 95/148)
  • Patent number: 8419826
    Abstract: The invention provides a process for the regeneration of at least one adsorbent bed, comprising at least the steps of: (a) contacting a first adsorbent bed (B1) with a gaseous stream (10) such that at least a portion of adsorbed species in said first adsorbent bed (B1) are released; (b) cooling a second adsorbent bed (B2); wherein a bypass (20) is provided around the second adsorbent bed (B2) and the gaseous stream (10), before contact with the first adsorbent bed (B1), is directed to at least one of (i) the second adsorbent bed (B2), and (ii) the bypass (20) around the second adsorbent bed (B2), wherein the proportion of gaseous stream (10) flowing through the bypass (20) is controlled.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 16, 2013
    Assignee: Shell Oil Company
    Inventor: Anders Carlsson
  • Patent number: 8414691
    Abstract: The system and method for recycling and using the heat from compressed gas produced by a biogas treatment plant. The system includes a biogas cleaning stage and a plurality of compression and heat exchanger stages that allows the heat generated by compressed gases to be harvested. After the heat is harvested, it is delivered to a jacketed vessel containing media used to remove contaminants from the biogas. The media inside the jacketed vessel requires regeneration or stripping of harmful VOCs and other contaminants picked up from the biogas. The system also includes an inert gas generator that creates hot inert gas that is delivered to the jacketed vessel that heats the media located therein to remove contaminants. Because the jacket vessel and the media are simultaneously heated, the system's heat-up time is reduced The system also includes a heat exchanger that partially recovers the heat from the inert gas.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 9, 2013
    Assignee: ESC Enviroenergy, LLC
    Inventors: Lowell Howard, Jeffrey Wetzel, Ronald Drake
  • Patent number: 8414690
    Abstract: Heat-exchangers and biogas conditioners including a heat exchange member disposed between upper and lower flanges of the apparatus in which at least the heat exchange member is formed of a highly thermally conductive material (e.g., at least 50 W/m?K) such as aluminum or aluminum alloy. A bed of zeolite is loaded within the apparatus so as to be in contact with the heat exchange member. The heat exchange member is shaped and configured so that any given location of the zeolite bed is no more than about 3 inches from the heat exchange member comprising the highly thermally conductive material.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: April 9, 2013
    Assignee: Bringham Young University
    Inventors: Jaron C. Hansen, Lee D. Hansen
  • Patent number: 8409332
    Abstract: The various embodiments of the present invention relate to compositions, apparatus, and methods comprising sorbent fibers. More particularly, various embodiments of the present invention are directed towards sorbent fiber compositions for temperature swing adsorption processes. Various embodiments of the present invention comprise sorbent fiber compositions, apparatus comprising a plurality of sorbent fibers, and methods of using the same for the capture of at least one component from a medium, for example CO2 from flue gas.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 2, 2013
    Assignees: Georgia Tech Research Corporation, ExxonMobil Research and Engineering Company
    Inventors: Ryan Lively, Ronald R. Chance, William J. Koros, Harry W. Deckman, Bruce T. Kelley
  • Patent number: 8409331
    Abstract: The invention relates to auxiliary systems ensuring functioning of alkaline fuel cell (AFC), in particular to a method and device for sorptive purification of air used in an AFC of carbon dioxide. In accordance with the invention, in the method for purifying air for a fuel cell, the starting air is passed through an adsorber with an adsorbent of carbon dioxide, then the adsorbent is regenerated. After utilization the adsorbent comprising hydrated oxides of transition metals is regenerated at a temperature of 60-120° C. by the air spent in the fuel cell.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: April 2, 2013
    Assignee: Obschestvo S Ogranichennoi Otvetstvennostiyu “Intensis”
    Inventors: Ziya Ramizovich Karichev, Dmitry Alexandrovich Blatov, Stanislav Iliich Simanenkov, Valentina Nikolaevna Shubina
  • Publication number: 20130074689
    Abstract: A device for adsorption treatment of a fluid or fluid stream, comprising a container for receiving adsorber material, wherein the container has a fluid inlet opening and a fluid outlet opening, and two fluid connection devices, wherein one of the fluid connection devices is provided at the fluid inlet opening and the other one of the fluid connection devices is provided at the fluid outlet opening, wherein the fluid connection devices are locked in a fluid-tight manner and are designed in such a way that they can each be connected to a fluid line connector and unlocked and, if they are connected to the respective fluid line connector they can be unlocked or are unlocked.
    Type: Application
    Filed: April 13, 2011
    Publication date: March 28, 2013
    Applicant: Clariant Produkte (Deutschland) GmbH
    Inventors: Hans-Georg Anfang, Christian Hamel, Norbert Modl
  • Patent number: 8404024
    Abstract: During the conventional temperature swing adsorption (TSA) process, NF3 co-adsorbed with the impurities is vented during regeneration. This invention is a novel TSA cycle in which the co-adsorbed NF3 is recovered. In this novel TSA cycle, a control scheme is used to stop the adsorption prior to the saturation of the adsorber with impurities and use a recovery purge gas (either co-current or counter-current) to release the co-adsorbed NF3 off the saturated adsorber. The effluent of the inert purge gas can be combined with the effluent of the on-stream vessel or can be recycled to the feed of the on-stream vessel. 10%-100% of the co-adsorbed NF3 is recovered and made available as product in this novel TSA cycle. Thus the overall process yield of NF3 is increased. The removing of the co-adsorbed NF3 from the adsorber also prevents adsorber degradation thus prolonging the useful life of the adsorber.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Philip Bruce Henderson, Patrick Michael Colleran, Forrest Eli Hulbert
  • Patent number: 8404023
    Abstract: A method of transferring filter media between a media bed of a dry scrubber and a filter media container, comprising placing the media bed in flow communication with the filter media container, obstructing a majority of an airflow path of the media bed, the airflow path extending from an unfiltered air input opening of the dry scrubber, through the media bed of the dry bed scrubber, to a filtered air output opening of said dry bed scrubber, powering a blower in the airflow path of the media bed when the airflow path is obstructed and the media bed is in flow communication with the filter media container, whereby the filter media is transferred between the media bed and the filter media container.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: March 26, 2013
    Assignee: AAF-McQuay Inc.
    Inventors: Michael W. Osborne, M. Aflal Rahmathullah, Cheah Wei Ng
  • Patent number: 8394174
    Abstract: The present invention provides for various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit in combination with either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit. The present invention further relates to a process for optimizing the recovery of carbon dioxide from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/water gas shift reactor/H2 pressure swing adsorption unit utilizing either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 12, 2013
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Patent number: 8394177
    Abstract: This invention provides methods for separating gas components from a gas stream. The methods are particularly advantageous in that an environmentally friendly biomass absorbent is used to assist in the separation process. The invention is particularly suited to separate water soluble gas components from a gas stream. The water soluble gas components can be used to condition the biomass for additional use, such as a conditioned feed for a biofuel. In general, the conditioned biomass will have increased enzyme digestibility, making the conditioned biomass highly suitable as feedstock for biofuel production.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: March 12, 2013
    Assignee: Michigan Biotechnology Institute
    Inventors: Timothy J. Campbell, Farzaneh Teymouri, David K. Jones
  • Patent number: 8377171
    Abstract: The present invention relates to methods and systems for purifying gases, such as for example semiconductor process gases. The invention more particularly relates to fluid purification methods and systems having improved heat transfer capabilities and controls such that the purified fluid produced from the process contains reduced impurity levels and/or exhibits more uniform concentrations within the final product. In another aspect of the invention, the activation time for adsorbent beds used in such processes and systems can be reduced.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Lloyd Anthony Brown, Thomas Justin Thompson
  • Publication number: 20130036905
    Abstract: The various embodiments of the present invention relate to compositions, apparatus, and methods comprising sorbent fibers. More particularly, various embodiments of the present invention are directed towards sorbent fiber compositions for temperature swing adsorption processes. Various embodiments of the present invention comprise sorbent fiber compositions, apparatus comprising a plurality of sorbent fibers, and methods of using the same for the capture of at least one component from a medium, for example CO2 from flue gas.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 14, 2013
    Applicants: ExxonMobil Research and Engineering Company, Georgia Tech Research Corporation
    Inventors: Ryan Lively, Ronald R. Chance, William J. Koros, Harry Deckman, Bruce T. Kelley
  • Patent number: 8372184
    Abstract: Embodiments of the invention relate to a composite hydrogen storage material comprising active material particles and a binder, wherein the binder immobilizes the active material particles sufficient to maintain relative spatial relationships between the active material particles.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 12, 2013
    Assignee: Societe BIC
    Inventor: Joerg Zimmermann
  • Patent number: 8366803
    Abstract: The invention relates to an air cleaner, and more particularly to an air cleaner which includes a regenerative deodorizing filter to purify and treat gaseous substances contained in air, thus enabling efficient regeneration of the regenerative deodorizing filter, and a method of regenerating the filter of the air cleaner.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 5, 2013
    Assignee: Enbion Inc.
    Inventor: Hyun Jae Lee
  • Publication number: 20130019749
    Abstract: Method for recovering a desired component from a waste gas comprising (a) at an operating facility, introducing a waste gas comprising the desired component and one or more undesired components into an adsorber containing adsorbent material selective for the desired component, adsorbing at least a portion of the desired component therein, (b) terminating flow of waste gas into the adsorber; and (c) recovering and concentrating the desired component by either (1) isolating the adsorber, transporting the adsorber to a central processing facility, or (2) withdrawing from the adsorber an intermediate gas enriched in the desired component, compressing the intermediate gas and storing it in a vessel, isolating the vessel, transporting the vessel to a central processing facility to provide a concentrated product further enriched in the desired component.
    Type: Application
    Filed: January 26, 2012
    Publication date: January 24, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Thomas Stephen Farris, Timothy Christopher Golden, Eugene Joseph Karwacki, JR.
  • Patent number: 8357229
    Abstract: The present invention relates to a process for separating oxygen at high temperature by means of a material comprising at least one compound according to the formula AxBO2-?.yH2O with a lamellar structure composed of sheets generated by the sequence of octahedra connected to one another by the edges, whereby A is at least one of the elements IA or IIA of the periodic classification of elements, B is at least one of the elements IIIB to IIB of the periodic classification of the elements, 0<x?2, 0?y?2, and ?0.4???0.4.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: January 22, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Arnold Lambert
  • Publication number: 20130012379
    Abstract: Disclosed is a swellable, sorbent material formed of a sol-gel derived composition having a porous matrix and a sorbent property modifier intermixed with at least a portion of the porous matrix. The sorbent property modifier modifies a sorbent property of the sorbent material when compared to the same sorbent property of the corresponding, unmodified sol-gel derived composition.
    Type: Application
    Filed: January 7, 2011
    Publication date: January 10, 2013
    Applicant: ABS MATERIALS, INC.
    Inventor: Paul L. Edmiston
  • Patent number: 8349053
    Abstract: A high efficiency gas concentrating apparatus includes an air compressor for supplying high pressure air, first and second adsorption towers that are disposed above the air compressor and communicating with the air compressor to adsorb nitrogen and concentrate oxygen as the high pressure air is alternately supplied thereto, first and second concentrating passages that are disposed above the respective first and second adsorption towers to discharge the concentrated oxygen, and a cleaning tank that is disposed between the first and second concentrating passages to receive a portion of the concentrated oxygen from one of the first and second adsorption towers, temporarily store the received concentrated oxygen therein, and alternately remove adsorbed nitrogen by supplying the temporarily concentrated oxygen to the other of the first and second adsorption towers.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: January 8, 2013
    Assignees: Oxus Co., Ltd., Sogang University Industry-University Cooperation Foundation
    Inventors: Tae Soo Lee, Yoon Sun Choi, Seung Kwon Oh, Shin Kyu Han
  • Patent number: 8337589
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: December 25, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 8317902
    Abstract: A process for removing polar components from a process stream in a refinery process without cooling the process stream. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur at substantially the same elevated temperature by exposing the process stream to a metal oxide and/or a mixed metal oxide to remove the sulfur containing contaminants and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be regenerated by exposing it to a stream of oxygen and the desulfurized process stream exposed to the regenerated metal/mixed metal oxide to remove moisture from the stream. The stream is then processed within a second adsorber unit to remove nitrogen containing contaminants at substantially the same elevated temperature by exposing the stream to a molecular sieve and/or zeolite.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: November 27, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Bhupender S Minhas, Frederick Y. Lo, Ian A Cody, Donald E Stratton
  • Patent number: 8313560
    Abstract: Methods for performing separation of gaseous entities via contacting the gaseous entities with a sorbent material including a porous structured organic film including a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein at a macroscopic level the covalent organic framework is a film are described.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: November 20, 2012
    Assignee: Xerox Corporation
    Inventors: Adrien P. Cote, Matthew A. Heuft
  • Patent number: 8313563
    Abstract: One exemplary embodiment can be an apparatus for isomerizing a hydrocarbon stream rich in a C4 hydrocarbon and/or at least one of a C5 and C6 hydrocarbon. The apparatus can include: a vessel containing a fluid including at least one reactant; a fluid transfer device receiving the fluid including at least one reactant from the vessel; at least one drier receiving the fluid including at least one reactant from the fluid transfer device; and a reactor communicating with the at least one drier to receive the fluid including at least one reactant. In addition, the at least one drier may communicate with the vessel at least by sending the fluid including at least one reactant or the regenerant through a fluid tapering device for at least one of regulating the flow and reducing the pressure of the regenerant to the vessel.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventors: David J. Shecterle, Bryan S. Garney, James M. Shawley, Jocelyn Daguio
  • Patent number: 8313562
    Abstract: One exemplary embodiment can be an apparatus for isomerizing a hydrocarbon stream rich in a C4 hydrocarbon and/or at least one of a C5 and C6 hydrocarbon. The apparatus can include: a first drier and a second drier adapted to receive a fluid including at least one reactant; and a reaction zone communicating with the first drier to receive the fluid including at least one reactant and with the second drier to receive the regenerant. Generally, the first drier operates at a first condition to dry the fluid including at least one reactant and the second drier operates at a second condition during regeneration with a regenerant. The regenerant can pass through a fluid tapering device for regulating the flow of the regenerant to the reaction zone.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventors: David J. Shecterle, Bryan S. Garney, Jocelyn C. Daguio, James M. Shawley
  • Publication number: 20120285321
    Abstract: Rotary valves are disclosed, comprising a seal sheet affixed to a rotor. At least some area, namely a “rotor plate surface mating area” is provided, over which a seal sheet anchoring assembly can directly abut, along a planar portion, the rotor plate surface that is in contact with the seal sheet. This advantageously provides an area of direct contacting between the seal sheet anchoring assembly, or one of its components, and the rotor plate, with the abutting surfaces being defined by consistently rigid materials (e.g., metals such as stainless steel) that undergo substantially no deformation, compression, or softening over conditions of normal operation.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: UOP LLC
    Inventor: STEPHEN JAY KOSKI
  • Patent number: 8298305
    Abstract: A hydrogen manufacturing system for performing offgas flow control includes: a vaporizer (1) for heating a material mixture containing a hydrocarbon material; a reforming reactor (2) for generating hydrogen-containing reformed gas by reforming reactions of the material; a PSA separator (5) for repeating a cycle of adsorption and desorption, where in the adsorption PSA separation is performed with an adsorption tower loaded with an adsorbent to adsorb unnecessary components in the reformed gas and extract hydrogen-enriched gas out of the tower, and in the desorption the offgas containing the unnecessary components from the adsorbent and remaining hydrogen is discharged from the tower; and a buffer tank (6) for holding the offgas before supplying to the vaporizer. The offgas flow supply from the tank (6) to the vaporizer is changed continuously over time when the cycle time is changed according to load change on the separator (5).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: October 30, 2012
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Toshihiko Sumida, Masanori Miyake, Hidenori Minami, Yoshinori Ueda
  • Patent number: 8287625
    Abstract: Embodiments of the present invention are directed to systems and methods for treating landfill gas using landfill leachate. In one embodiment of the present invention, a method includes receiving landfill leachate from at least one of a plurality of sources, and pretreating the landfill leachate to adjust at least one chemical property of at least one component of the landfill leachate. The leachate contacts landfill gas, so that at least one component of the landfill gas chemically reacts with at least one component of the landfill leachate to form a spent landfill leachate and a treated landfill gas. The method also includes recycling a first portion of the spent landfill leachate, recirculating a second portion of the spent landfill leachate to at least one of the plurality of sources, and subjecting the treated landfill gas to flare.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: October 16, 2012
    Assignee: Casella Waste Systems, Inc.
    Inventor: Douglas R. Casella
  • Patent number: 8282715
    Abstract: Carbon dioxide-containing feed stream such as flue gas is treated to produce a high-purity carbon dioxide stream by a series of steps including removing SOx and NOx with activated carbon, carrying out subambient-temperature processing to produce a product stream and a vent stream, and treating the vent stream by pressure swing adsorption or by physical or chemical absorption to produce a product stream which is recycled to the feed stream.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 9, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Bernard Thomas Neu
  • Publication number: 20120247330
    Abstract: An apparatus for capture and sequestration of CO2 from fossil fuel-fired power plant flue gas includes a polymer matrix embedded with a sorbent suitable for removing CO2 from the flue gas and a spacer mated with the polymer matrix. The spacer is adapted to create channels between adjacent portions of the polymer matrix such that the flue gas flows through the channels and comes in contact with the sorbent. Further, an apparatus for the capture and sequestration of CO2 from fossil fuel-fired power plant flue gas includes a hollow fiber membrane embedded with an adsorbent or other suitable material for removing CO2 from the flue gas. The adsorbent particles may be embedded into a wall of the membrane.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: ELECTRIC POWER RESEARCH INSTITUTE, INC.
    Inventors: Ramsay Chang, Adam Berger, Abhoyjit Bhown
  • Publication number: 20120247333
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8273160
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 25, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 8268044
    Abstract: A feed stream, comprising hydrogen sulphide (H2S), carbon dioxide (CO2), hydrogen (H2) and, optionally, carbon monoxide (CO), is separated into at least a CO2 product stream and an H2 or H2 and CO product stream. The stream is separated using a pressure swing adsorption system, an H2S removal system and a further separation system, which systems are used in series to separate the stream. The method has particular application in the separation of a sour (i.e. sulphur containing) syngas, as for example produced from the gasification of solid or heavy liquid carbonaceous feedstock.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: September 18, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Vincent White, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton, Charles Linford Schaffer
  • Patent number: 8262773
    Abstract: An improved method is provided for removing contaminants from a hydrocarbon stream, such as a stream of raw natural gas. The contaminated hydrocarbon stream is passed through a first adsorbent bed containing molecular sieves to adsorb contaminants on the molecular sieves, thereby removing at least some of the contaminants from the hydrocarbon stream. The contaminated hydrocarbon stream may optionally be passed through a second adsorbent bed containing a desiccant material other than molecular sieves. The molecular sieves are regenerated using a wet regeneration process in which both the water content and temperature of the regeneration fluid stream are staged.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: September 11, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: P. Scott Northrop, Francis S. Wu, Margaret Wu, legal representative, Narasimhan Sundaram
  • Patent number: 8257470
    Abstract: Disclosed is a harmful material treatment system for recovering the energy and removing the harmful material in the process of treating the gas containing the harmful material generated in the multiplex utilization facility, in the display mall, in diverse manufacturing processes and in the vehicle painting process, more particularly, to a harmful material treatment system which can recover the energy contained in the air conditioning facility or in the exhaust gas of the process with an efficiency of more than 90%, for exhausting the inside air to the outside so as to treat the contaminating material such as odor and volatile organic chemicals, and to remove the harmful material with a removal efficiency of more than 90% by adsorbing and concentrating the harmful material with a rotary-type adsorbent.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: September 4, 2012
    Assignee: Enbion Inc.
    Inventors: Hyun Jae Lee, Myeong Soo Yoon, Min Su Shin, Won Moon Jeong, Jeong Ki Min
  • Publication number: 20120210873
    Abstract: An exhaust gas processing apparatus for processing a mixed gas discharged from a semiconductor manufacturing apparatus is provided with: an adsorption separation unit for separating a monosilane gas that requires abatement and a hydrogen gas that does not require abatement by allowing the mixed gas to pass through and then by mainly adsorbing the monosilane gas among a plurality of types of gases contained in the mixed gas; a heating unit for desorbing the monosilane adsorbed onto the adsorption separation unit; a silane gas abatement unit for abating a monosilane gas desorbed from the adsorption separation unit; and a hydrogen gas discharge unit for discharging a hydrogen gas separated from the mixed gas by the adsorption separation unit.
    Type: Application
    Filed: March 11, 2010
    Publication date: August 23, 2012
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Ken Samura, Tai Ohuchi, Tsuyoshi Asano, Takashi Okabe
  • Patent number: 8246723
    Abstract: An apparatus for capture of CO2 from the atmosphere comprising an anion exchange material formed in a matrix exposed to a flow of the air.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 21, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Eddy J. Peters
  • Publication number: 20120204720
    Abstract: A method for reducing hydrocarbon emissions from automotive evaporative emissions control systems comprising steps of: contacting a vented fuel vapor stream from a fuel tank (1) with a first passive purge canister bed (5), the passive purge canister bed comprising a vapor adsorbent material and including a passive purge vapor inlet and a passive purge vapor outlet for vapor stream flow, -contacting a vapor stream from the passive purge vapor outlet with an active purge canister bed, the active purge canister bed (2) comprising a vapor adsorbent material; contacting the active purge canister bed with mechanically convected purge air, wherein the mechanically convected purge air is prevented from flowing through the passive purge canister bed; and contacting the passive purge canister bed with fresh purge air drawn passively by the fuel tank through the passive purge vapor outlet without first contacting said active purge canister bed.
    Type: Application
    Filed: October 28, 2010
    Publication date: August 16, 2012
    Applicant: MEADWESTVACO CORPORATION
    Inventors: Michael F. Tschantz, Peter D. McCrae
  • Publication number: 20120208088
    Abstract: A carbon composite material, including a plurality of spaced graphene sheets, each respective sheet having opposed generally planar surfaces, and a plurality of functionalized carbonaceous particles. At least some functionalized carbonaceous particles are disposed between any two adjacent graphene sheets, and each respective at least some functionalized carbonaceous particle is attached to both respective any two adjacent graphene sheets. Each respective graphene sheet comprises at least one layer of graphene and at least portions of respective any two adjacent graphene sheets are oriented substantially parallel with one another.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Inventors: Jian Xie, Meixian Wang
  • Patent number: 8241400
    Abstract: The present invention provides a process for recovering gaseous hydrogen and gaseous carbon dioxide from a mixture of hydrocarbons by utilizing a system that includes a reformer unit, an optional water gas shift reactor, and a pressure swing adsorption unit in conjunction with a carbon dioxide purification unit such as a cryogenic purification unit or a catalytic oxidizer. In this process, purified CO2 from the CO2 purification unit is used as a co-feed/co-purge in the pressure swing adsorption unit in order to produce a CO2 tail gas that includes a higher concentration of CO2.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 14, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Bhadra S. Grover
  • Patent number: 8241403
    Abstract: The present invention relates to systems for regenerating a plugged diesel particulate filter (DPF) or catalyzed DPF. In certain embodiments, the system includes a fluid container and pulse valve, a heater, and a blower. Other embodiments include methods of regenerating a plugged DPF by directing a fluid at a first face of a DPF, redirecting the fluid at a second face of the DPF, and in some embodiment, heating the DPF.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: August 14, 2012
    Assignee: Catalytic Solutions, Inc.
    Inventors: Ted N. Tadrous, Shun Hong Long
  • Patent number: 8236095
    Abstract: A vacuum-pressure swing absorption concentrator includes a motor driven compressor having pressure and vacuum heads that are connected to a pressure reservoir and a vacuum reservoir respectively. The pressure and vacuum reservoirs are selectively and alternately interconnected in sequence through a main valve to a pair of nitrogen filtering sieve beds. A controller operates the valve to alternately and cyclically interconnect the sieve beds to the pressure and vacuum reservoirs respectively. During each cycle, a respective bed is pressurized and enriched oxygen is produced and delivered to a tank for use by a patient. At the same time, the other bed is evacuated through the vacuum reservoir. A crossover valve delivers oxygen from a pressurized bed to an evacuated bed to facilitate purging of impurities previously collected in the evacuated bed.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: August 7, 2012
    Assignee: O2 Concepts, LLC
    Inventor: Stuart Bassine
  • Publication number: 20120192715
    Abstract: A method is provided for reclaiming an evaporated liquid from an air stream including transferring the evaporated liquid from a first quantity of air into a second quantity of air, wherein the second quantity of air is smaller than the first quantity of air. A device for performing the method is also provided.
    Type: Application
    Filed: July 14, 2010
    Publication date: August 2, 2012
    Applicant: KARLSRUHER INSTITUT FUR TECHNOLOGIE
    Inventor: Bernhard Lenz
  • Patent number: 8226746
    Abstract: Systems and processes are provided that relate to the recovery of sorbates in processes utilizing temperature controlled adsorption. Sorbate recovery can include providing a temperature controlled adsorber that is undergoing a regeneration cycle after undergoing an adsorption cycle. The temperature controlled adsorber can have one or more adsorption flow passages and one or more heat transfer flow passages. The one or more adsorption flow passages can contain an adsorptive material coating with a sorbate adsorbed thereto. A heating fluid can be provided to the one or more heat transfer flow passages of the temperature controlled adsorber. A regeneration stream can be provided to the one or more adsorption flow passages of the temperature controlled adsorber. The adsorptive material coating can be regenerated by removing the sorbate from the temperature controlled adsorber to produce a regeneration effluent stream.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: July 24, 2012
    Assignee: UOP LLC
    Inventors: Stephen R. Dunne, David A. Wegerer
  • Publication number: 20120180660
    Abstract: A polyvinylidene fluoride (PVDF) pyrolyzate adsorbent is described, having utility for storing gases in an adsorbed state, and from which adsorbed gas may be desorbed to supply same for use. The PVDF pyrolyzate adsorbent can be of monolithic unitary form, or in a bead, powder, film, particulate or other finely divided form. The adsorbent is particularly suited for storage and supply of fluorine-containing gases, such as fluorine gas, nitrogen trifluoride, carbo-fluoride gases, and the like. The adsorbent may be utilized in a gas storage and dispensing system, in which the adsorbent is contained in a supply vessel, from which sorbate gas can be selectively dispensed.
    Type: Application
    Filed: December 17, 2011
    Publication date: July 19, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Shaun M. Wilson, Edward A. Sturm
  • Patent number: 8221527
    Abstract: An apparatus for capture of CO2 from the atmosphere comprising an anion exchange material formed in a matrix exposed to a flow of the air.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 17, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Eddy J. Peters
  • Patent number: 8221526
    Abstract: The invention relates to a method for purifying or separating a supply gas flow containing at least one impurity, in which: a) said supply gas flow is contacted with a first adsorbent for the adsorption-removal of at least one said impurity; b) recovering said purified or separated gas; c) heating a regeneration gas containing at least hydrogen (H2) and carbon monoxide (CO) using a heater having a skin temperature (T1) of between 150° C. and 200° C. during the gas heating phase; and d) periodically regenerating the adsorbent of step a) with the regeneration gas heated during step c) at a regeneration temperature (T2) such that: T2=T1??T with 5° C.<?T<50° C.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: July 17, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Guillaume Rodrigues, Simon Jallais
  • Patent number: 8221524
    Abstract: The invention relates to a method for achieving low oxygen levels in a natural gas stream without the use of a catalytic system. In one embodiment, the method comprises: membrane treatment for the removal of the bulk of CO2 and oxygen in the natural gas feed and the addition of a PSA system using a carbon molecular sieve adsorbent for the adsorption of residual oxygen.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 17, 2012
    Assignee: Guild Associates, Inc.
    Inventor: Michael J. Mitariten
  • Patent number: 8216344
    Abstract: Carbon dioxide-containing feed stream such as flue gas is treated to produce a high-purity carbon dioxide stream by a series of steps including removing SOx and NOx with activated carbon, carrying out subambient-temperature processing to produce a product stream and a vent stream, and treating the vent stream by pressure swing adsorption or by physical or chemical absorption to produce a product stream which is recycled to the feed stream.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 10, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Bernard Thomas Neu
  • Publication number: 20120167765
    Abstract: An adsorbent comprising a zeolite having a pore diameter of not less than 4.5 angstroms and not more than 7.3 angstroms as a principal component, which can adsorb xenon under ordinary temperatures and pressures or under ordinary temperatures and low xenon partial pressure, is used. In the xenon recovery method of the present invention, the adsorbent is communicated with a xenon-containing equipment, and xenon is adsorbed on the adsorbent and xenon is detached from the adsorbent. Thereby, xenon can be recovered, with efficiency, directly from used equipment in which xenon is enclosed under ordinary temperatures and pressures or under ordinary temperatures and low xenon partial pressure.
    Type: Application
    Filed: August 26, 2010
    Publication date: July 5, 2012
    Applicant: PANASONIC CORPORATION
    Inventor: Akiko Yuasa
  • Publication number: 20120152209
    Abstract: A motor vehicle has an internal combustion engine (1) that is supplied with fuel from a fuel tank (4). A regeneratable filter device (6) is associated with the fuel tank (4) and can be connected to a vacuum storage device (20) for purging the filter device (6). To simplify and/or improve the regeneration of the filter device, the vacuum storage device (20) is arranged outside an intake tract of the internal combustion engine (1) and is associated with the fuel tank (4).
    Type: Application
    Filed: December 7, 2011
    Publication date: June 21, 2012
    Applicant: DR. ING. H.C.F. PORSCHE AKTIENGESELLSCHAFT
    Inventor: Andreas Menke
  • Patent number: 8202350
    Abstract: Aspects of the invention include a method and apparatus for reversibly sorbing a target gas. In one embodiment, an apparatus for reversibly sorbing a target gas is disclosed. The apparatus includes an inlet, a multi-channel monolith coupled to the inlet, the multi-channel monolith including a plurality of channels, each one of the plurality of channels includes one or more walls, wherein at least one of the one or more walls of at least one of the plurality of channels is porous and wherein one or more of the plurality of channels contain a sorbent and an outlet coupled to the multi-channel monolith.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 19, 2012
    Assignee: SRI International
    Inventors: Marianna F. Asaro, Yigal Blum