And Regeneration Patents (Class 95/148)
  • Patent number: 7850766
    Abstract: Systems and methods are provided for substantially reducing undesired cumulative effects by preferentially heating the active particles. By preferentially heating the active particles, the active particles are “cleaned” of substances that may reduce or negate particle activity. In addition, preferential heating may reduce active particle adsorption of binder.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 14, 2010
    Assignee: Cocona, Inc.
    Inventor: Gregory W. Haggquist
  • Publication number: 20100307335
    Abstract: Gas fired internal combustion engines which are run on contaminated fuel suffer from the buildup of internal deposits and corrosion. This is a particular problem with engines fuelled by biogas, e.g. from waste decomposition. By filtering the fuel via a filter containing an ion-exchange resin substantial improvements can be obtained.
    Type: Application
    Filed: January 21, 2008
    Publication date: December 9, 2010
    Inventor: John Hayward
  • Patent number: 7846237
    Abstract: The concentration of adsorbate in the feed gas to an on-stream bed of a cyclical swing adsorption process is monitored and the data processed to predict the time required to complete the on-stream mode of that bed and the purge flow rate and/or other regeneration mode operating condition of the concurrently off-stream bed is modified in response to changes in said predicted time whereby the regeneration mode of the off-steam bed is completed at the same time as the on-stream mode of the concurrent on-stream bed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: December 7, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Mohammad Ali Kalbassi, Timothy Christopher Golden, Christopher James Raiswell
  • Publication number: 20100300145
    Abstract: A method is disclosed for distributing a plurality of fluid which flows through a plurality of chambers and an apparatus for performing this method, which comprises a first fluid flow distribution device (2), with no mixing feature, having a first plurality P of inlet/outlet lines (31, 32, 33, 34) opposite a second plurality N of inlet/outlet lines (41, 42, 43, 44, 45, 46, 47, 48), where N?P, said first distribution device (2) selectively connecting each of said lines of said second plurality N of lines (41, 42, 43, 44, 45, 46, 47, 48) with one of said lines of said first plurality P of lines (31, 32, 33, 34), said first distribution device (2) being adapted for simultaneous intermittent and sequential switching of the connection between all of said N lines of said second plurality of lines with all of said P lines of said first plurality of lines, to sequentially provide N different possible inlet/outlet patterns; a second fluid flow distribution device (6), said second distribution devices (6) have a synchr
    Type: Application
    Filed: January 23, 2009
    Publication date: December 2, 2010
    Applicant: POLARIS S.R.L.
    Inventors: Gianclaudio Masetto, Francesco Masetto, Claudia Masetto
  • Patent number: 7837767
    Abstract: Processes comprising: providing a crude gas stream having a temperature not exceeding 40° C., the crude gas stream comprising hydrogen chloride and at least one organic impurity; condensing at least a portion of the at least one organic impurity from the crude gas stream at a temperature not exceeding 0° C. to form a prepurified gas stream and a condensate comprising condensed organic impurity; subjecting at least a portion of the prepurified gas stream to adsorption on an adsorption medium to provide a purified gas stream; and separating the condensate into at least a head gas stream comprising residual hydrogen chloride and a sump stream comprising at least a portion of the condensed organic impurity.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: November 23, 2010
    Assignee: Bayer MaterialScience AG
    Inventors: Ole Brettschneider, Knud Werner
  • Publication number: 20100292524
    Abstract: A process is provided for recovering methane from landfill feed gas and other anaerobic digestors. The process comprising the following steps: firstly treating the feed gas to remove H2S; subsequently compressing the gas; and then treating the gas to remove further impurities. Additionally, there is provided a chiller for reducing the temperature of a gas flow. The chiller comprising: a shell arranged to be chilled, a plurality of bores through the shell and through which the gas flows, in use, and forming, together with the shell, a heat exchanger, a tangential inlet to each bore for creating a spiral flow of the gas through the bore, in use. Furthermore, a process is provided for purifying a gas feed using a reversible gas absorber unit comprising two hollow fibre gas/liquid contactors, each of which is arranged to provide a counter-current flow.
    Type: Application
    Filed: January 9, 2007
    Publication date: November 18, 2010
    Applicant: GASREC LIMITED
    Inventors: Andrew Derek Turner, Richard John Lileystone, George Cutts
  • Patent number: 7828878
    Abstract: An improved gas separation PSA process, more particularly for oxygen production, utilizing adsorbents of Type X characterized by high frequency (i.e., cycle times of less than 4 s), bed length to square of mean particle diameter ratio within 200 to 600 mm?1, bed size factor of less than 50 lb/TPDO. The bed length, mean particle size, and cycle time are selected in a range such that axial dispersion becomes an important factor. In this way, low product recovery and high pressure drop (high power consumption) disadvantages often associated with the use of small particles are overcome.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 9, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Guoming Zhong, Peter James Rankin, Mark William Ackley
  • Patent number: 7806964
    Abstract: The system and method for recycling the compress heat generated at a bio-gas treatment plant that includes the assembly of a heat exchanger at each stage of compression designed to utilizing all of the gas flow and to harvest the heat in gas delivered to the air exchangers. After the heat is harvested, it is then conveyed either as hot air, or as a hot liquid, to a jacketed vessel containing media that requires regeneration or stripping of harmful VOCs picked up during the purification of contaminated landfill or municipal digester gas. The harvesting and conveyance of the heat of compression of the gases to a jacket around the vessel interior (indirect contact) and simultaneously heating the vessel interior containing the spent media through hot gas from another source (direct contact), reduces the heat-up time. This also reduces the overall the cycle time between the contaminant pick-up step and contaminant stripping step in regenerable treatment systems.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 5, 2010
    Inventors: Lowell E. Howard, Jeffrey V. Wetzel
  • Patent number: 7799120
    Abstract: A carbon dioxide storage system includes a container and a conduit attached to the container for introducing or removing a carbon dioxide-containing composition from the container. A carbon dioxide storage material is positioned within the container. The carbon dioxide-storage material includes a metal-organic framework, which has a sufficient surface area to store at least 10 carbon dioxide molecules per formula unit of the metal-organic framework at a temperature of about 25° C.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: September 21, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Omar M. Yaghi, Andrew Robert Millward
  • Patent number: 7794524
    Abstract: A method and apparatus for removing purifying vaporizable contaminants such as mercury from a particulate material. Particulate material is first contacted with heated gases to vaporize the contaminants and entrain the material in the gases. The gases are directed to a first dust collector to remove the entrained particulates, after which a sorbent or chemical reagent is injected in the gases to interact with the contaminants and form a contaminant containing product that is entrained in the gases. The product is then separated from the gases in a second collector.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: September 14, 2010
    Assignee: F L Smidth A/S
    Inventors: Ove Lars Jepsen, Peter T. Paone, III, John S. Salmento
  • Patent number: 7789938
    Abstract: Device for drying a compressed gas which consists of a compressed gas supply (2), two pressure vessels (33 and 34) which are provided with an input (37, respectively) and an output (39, 40 respectively) and a take-up point (32) for users of compressed dried gas, whereby at least two layers of desiccant (35 and 36) are provided in the pressure vessels (33 and 34), a first layer (35) made of a waterproof desiccant and a second layer (36) which is not necessarily made of a waterproof desiccant respectively, and whereby the pressure vessels (33 and 34) are provided with a second input (41, 42 respectively) for the supply of compressed gas to regenerate desiccant from the first layer (35).
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: September 7, 2010
    Assignee: Atlas Copco Airpower, naamloze vennootschap
    Inventor: Filip Gustaaf M. Huberland
  • Publication number: 20100212493
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, nitrogen process streams, and other types of streams. The methods and systems may include at least one swing adsorption process including pressure swing adsorption, temperature swing adsorption, and rapid-cycle adsorption processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and for other utilities. The systems and processes of the present disclosure are further applicable to high pressure gaseous streams, for example, up to about 600 bar.
    Type: Application
    Filed: October 14, 2008
    Publication date: August 26, 2010
    Inventors: Peter C. Rasmussen, Paul L. Tanaka, Bruce T. Kelley, Stanley O. Uptigrove, Harry W. Deckman
  • Patent number: 7776138
    Abstract: A process for the removal of contaminants from a gas stream is disclosed. A gas stream is contacted with a chlorine-containing compound to form a mixed gas stream. The mixed gas stream is then contacted with a sorbent in a sorption zone to produce a product gas stream and a sulfur laden sorbent, wherein the sorbent comprises zinc and a promoter metal.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: August 17, 2010
    Assignee: ConocoPhillips Company
    Inventors: Roland Schmidt, Robert W. Morton
  • Patent number: 7771510
    Abstract: The present invention relates to a fixed bed hypersorber having moving ports for injecting and withdrawing fluids which can be used for fractionation of gaseous mixtures in a fixed bed filled with absorbents/adsorbents, where separation is brought about by contacting gaseous mixture in a counter-current fashion. The moving ports may take the form of pistons or pairs of tubes arranged concentrically, where one of the tubes has a straight slot and the other tube has a helical slot. Rotation of the tubes with respect to each other produces the moving port.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: August 10, 2010
    Assignees: Gail (India) Limited, India Institute of Technology
    Inventors: Bojanki Satya Govinda Ramaprasad, Davuluri Prahlada Rao
  • Patent number: 7766998
    Abstract: In one aspect of the present invention, an apparatus for the extraction of water from air incorporated into a wall of a building has a cavity formed in the wall. The cavity has an air inlet and an air outlet. A condensing surface is disposed within the cavity and is adapted to direct condensed water to a water storage unit. In another aspect of the present invention, the cavity is formed between two different building walls.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 3, 2010
    Inventors: David R. Hall, Tyson J. Wilde, Andrew Gerla, Joshua Larsen
  • Publication number: 20100180763
    Abstract: The invention relates to an air cleaner, and more particularly to an air cleaner which includes a regenerative deodorizing filter to purify and treat gaseous substances contained in air, thus enabling efficient regeneration of the regenerative deodorizing filter, and a method of regenerating the filter of the air cleaner.
    Type: Application
    Filed: April 23, 2008
    Publication date: July 22, 2010
    Applicant: ENBION INC.
    Inventor: Hyun Jae Lee
  • Patent number: 7758672
    Abstract: The present invention relates to an apparatus and process for oxygen concentration that makes possible the production of highly purified concentrated oxygen by modifying the structure of the adsorption bed and with various valves coupled thereto, and which can increase purity of the oxygen produced and reduce mechanical energy and consumption of electricity of the air compressor.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: July 20, 2010
    Assignee: Oxus Co., Ltd.
    Inventors: Tae Soo Lee, Yoon Sun Choi, Yong Duck Kim
  • Patent number: 7749307
    Abstract: Process for providing a purified gas stream, comprising: providing a crude gas stream comprising an organic impurity; condensing at least a portion of the impurity from the gas stream to form a prepurified gas stream; and subjecting the prepurified stream to adsorption on a first adsorption medium; wherein the first medium is subjected to a regeneration comprising: providing a circulating inert gas stream having a temperature of at least 100° C.; passing the circulating inert gas stream over the first medium to form an organic impurity-loaded inert gas stream; cooling the loaded stream; condensing at least a portion of the organic impurity from the cooled stream to provide a prepurified circulating inert gas stream; subjecting the prepurified gas stream to adsorption on a second adsorption medium to provide a purified circulating inert gas stream; and recycling the purified gas stream to the circulating inert gas stream.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: July 6, 2010
    Assignee: Bayer MaterialScience AG
    Inventors: Ole Brettschneider, Knud Werner, Torsten Erwe
  • Patent number: 7744676
    Abstract: In a TSA process of an at least two-component raw gas, to adjust for fluctuation in load, the cycle time of at least one method step is extended in the event of falling below the design load value.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 29, 2010
    Assignee: Linde Aktiengesellschaft
    Inventors: Werner Leitmayr, Ralf Müller
  • Patent number: 7736416
    Abstract: A carbon dioxide (CO2) removal system includes a first sorbent bed and a second sorbent bed. Each of the first and second sorbent beds has a molecular sieve sorbent for adsorbing or desorbing CO2. One of the sorbent beds adsorbs CO2 and the other of the sorbent beds desorbs CO2. The first and second sorbent beds are thermally connected to transfer heat between the sorbent beds.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: June 15, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Timothy A. Nalette, Tony Rector
  • Patent number: 7731782
    Abstract: Adsorption of CO2 from flue gas streams using temperature swing adsorption. The resulting CO2 rich stream is compressed for sequestration into a subterranean formation and at least a portion of the heat of compression is used in the desorption step of the temperature swing adsorption process.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bruce T. Kelley, Harry W. Deckman, Frank Hershkowitz, Paul S. Northrop, Peter I. Ravikovitch
  • Patent number: 7727306
    Abstract: A system for use in the treatment of contaminated fluid is provided. The system includes a source from which contaminated fluid may be introduced into the system, and a reservoir for an adsorbent material designed to remove contaminants from the fluid. The system also includes a reactor within which the adsorbent material and the contaminated fluid may be accommodated for treatment. A separation device may further be included for removing spent adsorbent materials from the system. A method for treating contaminated fluid is also provided.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 1, 2010
    Assignee: Perry Equipment Corporation
    Inventors: John A. Krogue, Timothy L. Holmes, Michelle Hewitt
  • Patent number: 7722701
    Abstract: The subject of the invention is method and envelope structure for handling gas diffusion of airships and other balloons to significantly decrease, respectively fully eliminate envelope diffusion of gases through envelopes of airships and other balloons. During the method according to the invention the gases diffused through the envelope (8, 9) of airships and other balloons are collected into a separator space (2). These gases are separated from the mixture of this separator space by physical and/or chemical action and forwarded back to their sources. The invention is further an envelope structure for handling gas diffusion of airships and other balloons for applying methods according to the invention.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 25, 2010
    Inventor: Imre Nehez
  • Patent number: 7722704
    Abstract: The present invention provides a nitrogen oxide removal equipment, a nitrogen oxide removal method, a container used for the removal of nitrogen oxide, and a method for filling the container. A nitrogen oxide removal equipment 94 according to the present invention supplies gas with the unevenness of flowing amounts eased to an absorption unit 94a via a gas rectification means 108 for supplying gas to a large-area side of solid absorbent layers, the absorption unit 94a being provided with solid absorbent layers including a plurality of low-profile solid absorbents 95 constituting the nitrogen oxide absorption means. Nitrogen oxide contained in gas effectively passes through the solid absorbent layers and removed.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: May 25, 2010
    Assignee: Nishimatsu Construction Co., Ltd.
    Inventors: Tamotsu Nishi, Tadahiko Itoh, Tsutomu Tanaka
  • Patent number: 7722700
    Abstract: Component gas is separated from a gas mixture. Component gas flow rate, or demand, is determined. One or more gas separator operating parameters is changed based on the component gas flow rate. For example, gas flow rate can be approximated by measuring a rate of pressure decay of a product tank during a time period in which the tank is not being replenished by the separating system. When it is determined that the flow rate is relatively low, operating parameters of the separating system are changed to improve system performance with the lower demand. For example, a target product tank pressure at which sieve beds are switched can be lowered when demand is lower.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: May 25, 2010
    Assignee: Invacare Corporation
    Inventor: Thomas Sprinkle
  • Patent number: 7708803
    Abstract: The invention provides methods and apparatuses for removing additional aerosols and in some cases additional particulate matter from a gas stream, wherein a certain portion of such aerosols and particulate matter has already been removed using a primary aerosol and particulate collection device. In some embodiments, the invention includes a method for removing additional aerosols from a gas stream, including passing a gas stream having a plurality of aerosols through a gas duct; removing a first portion of the plurality of the aerosols using a primary aerosol collector; passing the gas steam through a screen; collecting at least a second portion of the plurality of aerosols on the screen; and cleaning a portion of the screen outside of the gas duct. The invention also provides various apparatuses for use in performing the method of the invention.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 4, 2010
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Mark Simpson Berry, Ramsay Chang
  • Patent number: 7708815
    Abstract: Embodiments of the invention relate to a composite hydrogen storage material comprising active material particles and a binder, wherein the binder immobilizes the active material particles sufficient to maintain relative spatial relationships between the active material particles.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: May 4, 2010
    Assignee: Angstrom Power Incorporated
    Inventor: Joerg Zimmermann
  • Publication number: 20100095844
    Abstract: A portable room air purifier includes a hollow cylindrical air filter disposed within a housing and having an inner surface circumscribing a cylindrical air treatment space and an outer surface. A sorbant material is disposed on the inner surface of the air filter and a germicidal lamp is disposed within the cylindrical air treatment space to emit germicidal light within the space and incident upon the sorbant material on the inner surface of the air filter. A fan is disposed in the housing to draw air from the cylindrical air treatment space through the air filter such that the air enters the filter through the inner surface and exits the filter through the outer surface. The portable room air purifier preferably includes an electrical circuit configured to power the fan and the germicidal lamp when the housing is in an assembled condition, and to deactivate both the fan and the lamp when the housing is disassembled.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 22, 2010
    Applicant: Steril-Aire, Inc.
    Inventors: Kenneth E. Gilleland, Robert M. Culbert, Robert Scheir
  • Patent number: 7695545
    Abstract: A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: April 13, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr., Jeffrey Raymond Hufton, Paul Anthony Novosat
  • Patent number: 7691183
    Abstract: Method for drying the compressed gas of a compressor device (1) having at least two pressure stages (4-5), whereby a dryer (3) is used with at least two pressure vessels (9-12) which are filled with a desiccant and which work alternately, such that when one pressure vessel (12) is in action to dry the compressed gas, the other pressure vessel (9) is being regenerated, whereby, in order to regenerate the other pressure vessel (9), at least a part of this compressed gas is guided through the regenerating pressure vessel (9), and at least at the end of the regeneration cycle, this part of the compressed gas, after its passage through the regenerating pressure vessel, is guided to the pressure pipe (6) between two pressure stages (4-5).
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: April 6, 2010
    Assignee: Atlas Copco Airpower Naamloze Vennootschap
    Inventor: Danny Etienne Andrée Vertriest
  • Patent number: 7678179
    Abstract: A processing system according to the present invention is provided including: an adsorption apparatus in which a volatile organic compound contained in gas to be treated is adsorbed in a predetermined absorption agent, and said volatile organic compound thus adsorbed is desorbed using steam under a pressurized environment and mixed with the steam; a gas turbine having a combustor in which the steam mixed with the volatile organic compound is burnt; and a steam generating apparatus which generates steam through the use of the heat of the combustion gas discharged from the gas turbine; and wherein, by supplying compressed air discharged from the gas turbine to the adsorption apparatus, condensation of the steam in the adsorption apparatus at the time of the desorption of the volatile organic compound is suppressed.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 16, 2010
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Shigekazu Uji
  • Publication number: 20100050866
    Abstract: There are provided a nanowire filter, a method for manufacturing the same, a filtering apparatus having the same, and a method for removing material adsorbed on the nanowire filter. The filtering apparatus includes: a filter having a supporting member and a plurality of nanowires supported on the supporting member and arranged in a crystallized state; and a body into which the filter is inserted and secured, and which has an inlet for guiding an introduced fluid to the filter and an outlet for discharging the fluid filtered through the filter to the outside.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 4, 2010
    Applicant: Electronics and Telecommunications Research Instiitute
    Inventors: Han-Young Yu, An-Soon Kim, Chil-Seong Ah, In-Bok Baek, Jong-Heon Yang, Chang-Geun Ahn, Seong-Jae Lee, Tae-Hyoung Zyung
  • Publication number: 20100024641
    Abstract: A method of purifying a gaseous mixture rich in hydrogen and in carbon monoxide, commonly termed an H2/CO mixture or syngas, by adsorption prior to treating it cryogenically with a view to producing a CO-rich fraction, and/or one or more H2/CO mixtures of determined content, such as a mixture of 50 mol % H2/50 mol % CO and generally a hydrogen-rich fraction is provided.
    Type: Application
    Filed: January 10, 2008
    Publication date: February 4, 2010
    Applicant: L'AIR LIQUIDE SOCIETE ANONYME POUR L-ETUDE ET L EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Christian Monereau, Guillaume Rodrigues, Ingrid Bellec, Francois Demoisy
  • Patent number: 7651550
    Abstract: A desorption process and a process for producing a catalytically deactivated formed zeolitic adsorbent, whereby both processes are suitable to improve the lifetime of a formed zeolitic adsorbent in the removal of sulfur compounds from sulfur contaminated gas and liquid feed streams. The adsorbent is in particular a synthetic 13X or LSX faujasite with a silica to alumina ratio from 1.9:1.0 to about 3.0:1.0. The cations of the faujasite include alkali and alkaline earth metals. The formed zeolite mixture is preferably catalytically deactivated due to a phosphate treatment. The desorption is carried out thermally, wherein the heat treatment is done at different temperature stages to avoid decomposition of the organic sulfur compounds.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: January 26, 2010
    Assignee: Zeochem AG
    Inventors: Peter Hawes, Andreas Scheuble, Beat Kleeb, Armin Pfenninger
  • Patent number: 7648682
    Abstract: The invention relates to an improvement in apparatus and process for effecting storage and delivery of a gas. The storage and delivery apparatus is comprised of a storage and dispensing vessel containing a medium capable of storing a gas and permitting delivery of the gas stored in the medium from the vessel, the improvement comprising: (a) a reactive liquid having Lewis acidity or basicity; (b) a gas liquid complex in a reversible reacted state formed under conditions of pressure and temperature by contacting the gas having Lewis acidity with the reactive liquid having Lewis basicity or the gas having Lewis basicity with the reactive liquid having Lewis acidity; (c) a non-reactive wick medium holding and dispersing the reactive liquid and the gas liquid complex therein.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: January 19, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wayne Thomas McDermott, Daniel Joseph Tempel, Philip Bruce Henderson, Ronald Martin Pearlstein
  • Patent number: 7648562
    Abstract: In a PSA separation method with compression (C1, C2) of at least one offgas (3), in case of temporary shutdown of one of the compressors (C1, C2), the operating parameters of the PSA unit (S) are changed to increase the outlet pressure of the offgas (3), in order to maintain a production level above 50% with a single compressor (C1).
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: January 19, 2010
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, François Fuentes, Philippe Merino
  • Publication number: 20100005965
    Abstract: The invention provides a process for removal of metal carbonyls from a synthesis gas stream comprising metal carbonyls, the process comprising the steps of: (a) adsorption of metal carbonyls by contacting the synthesis gas stream with solid adsorbent comprising activated carbon and/or hydrophobic zeolite to obtain solid adsorbent enriched in metal carbonyls and a synthesis gas stream depleted of metal carbonyls; (b) desorption of metal carbonyls by contacting the solid adsorbent enriched in metal carbonyls with CO-containing gas comprising at least 0.5 volume % CO to obtain regenerated adsorbent depleted of metal carbonyls and CO-containing gas enriched in metal carbonyls, wherein the temperature at which metal carbonyl desorption takes place is higher than the temperature at which metal carbonyl adsorption takes place.
    Type: Application
    Filed: September 26, 2007
    Publication date: January 14, 2010
    Inventor: Adriaan Johannes Kodde
  • Publication number: 20090320678
    Abstract: Methods and apparatuses are described for removing a contaminant, such as a vaporous trace metal contaminant like mercury, from a gas stream. In one embodiment, a primary particulate collection device that removes particulate matter is used. In this embodiment, a sorbent filter is placed within the housing of the primary particulate collection device, such as an electrostatic precipitator or a baghouse, to adsorb the contaminant of interest. In another embodiment, a sorbent filter is placed within or after a scrubber, such as a wet scrubber, to adsorb the contaminant of interest. In some embodiments, the invention provides methods and apparatuses that can advantageously be retrofit into existing particulate collection equipment. In some embodiments, the invention provides methods and apparatuses that in addition to removal of a contaminant additionally remove particulate matter from a gas stream.
    Type: Application
    Filed: March 25, 2009
    Publication date: December 31, 2009
    Applicant: Electric Power Research Institute, Inc.
    Inventors: Ramsay Chang, Charles E. Dene, Larry Scot Monroe, Mark Simpson Berry, M. Brandon Looney
  • Publication number: 20090314160
    Abstract: An apparatus and method for regenerating a sorption dryer or cleaner by periodically heating the sorbing surface utilizing a number of heating elements distributed along the sorbing surface which are alternately switched on and off.
    Type: Application
    Filed: October 9, 2006
    Publication date: December 24, 2009
    Inventor: Willem Meijer
  • Patent number: 7632337
    Abstract: The present invention relates to cryogenic air separation processes and systems that employ a pressure swing adsorption (PSA) prepurification process. It is advantageous to operate the PSA process at a pressure comparable to or below the operating pressure of the highest pressure column in the cryogenic separation unit. Following PSA prepurification, the air can be split into at least two fractions, with at least a portion of the air being directed to the cryogenic separation unit and at least a portion of the remaining air being further pressurized in at least one stage of compression.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: December 15, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Henry Edward Howard, Jeffert John Nowobilski
  • Publication number: 20090288557
    Abstract: The present invention relates to a process for the separation of gases which comprises putting a mixture of gases in contact with a zeolite of the ESV type to obtain the selective adsorption of at least one of the gases forming the gaseous mixture. The present invention also relates to particular zeolitic compositions suitable as adsorbents.
    Type: Application
    Filed: June 19, 2007
    Publication date: November 26, 2009
    Applicant: ENI S.P.A.
    Inventors: Angela Carati, Caterina Rizzo, Marco Tagliabue, Luciano Cosimo Carluccio, Cristina Flego, Liberato Giampaolo Ciccarelli
  • Patent number: 7618478
    Abstract: The present invention generally relates to vacuum pressure swing adsorption (VPSA) processes and apparatus to recover carbon dioxide having a purity of approximately ?80 mole percent from streams containing at least carbon dioxide and hydrogen (e.g., syngas). The feed to the CO2 VPSA can be at super ambient pressure. The CO2 VPSA unit produces two streams, a H2-enriched stream and a CO2 product stream. The process cycle steps are selected such that there is minimal or no hydrogen losses from the process. The recovered CO2 can be further upgraded, sequestered or used in applications such as enhanced oil recovery (EOR).
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: November 17, 2009
    Assignee: Praxair Technology, Inc.
    Inventor: Ravi Kumar
  • Patent number: 7611564
    Abstract: A process for recovery of n-propyl bromide solvent includes mixing a solvent laden vapor stream with an additive and reclaiming the solvent using a carbon adsorption system. A carbon adsorption system and an additive dispensing system form a system for the recovery of n-propyl bromide. These processes and systems use an additive that includes an acid scavenger and a carrier.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 3, 2009
    Assignee: Parts Cleaning Technologies LLC
    Inventors: Joe McChesney, James R. Goodrich
  • Publication number: 20090266230
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high CO2 sorption. The poly(ionic liquid)s have enhanced and reproducible CO2 sorption capacities and sorption/desorption rates relative to room-temperature ionic liquids. Furthermore, these materials exhibit selectivity relative to other gases such as nitrogen, methane, and oxygen. They are useful as efficient separation agents, such sorbents and membranes. Novel radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Application
    Filed: August 5, 2005
    Publication date: October 29, 2009
    Inventors: Maciej Radosz, Youqing Shen
  • Patent number: 7608133
    Abstract: A process for removal of carbon dioxide from air using lithium-exchanged X-zeolites at low carbon dioxide partial pressures is provided. The process is particularly useful in applications where fresh air is not available and exhaled air needs to be recycled. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 27, 2009
    Assignee: Honeywell International Inc.
    Inventors: Stephen F. Yates, Allen A. MacKnight
  • Patent number: 7604683
    Abstract: A gas separation method for separating a specific component gas from a mixed gas using an adsorbent comprises (1) a contact step of bringing a mixed gas into a vessel to contact at a first pressure the mixed gas with an adsorbent whose adsorption property with respect to a specific component gas exhibits hysteresis, (2) a decompression step of decompressing the mixed gas in the vessel to a second pressure which is lower than the first pressure and which is within the hysteresis range, and (3) a desorption step of causing adsorbed matter to detach by placing the adsorbent at a third pressure which is lower than the second pressure and which is outside of the hysteresis range and/or by heating the adsorbent.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: October 20, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Taihei Mukaide
  • Patent number: 7601189
    Abstract: A filtering method and a filter device (10) for removing impurities from the breathing air (24) in a room, an air raid shelter or a vehicle. According to the filtering method, the air to be filtered is driven through a carbon dioxide filter (13) by a fan (15), with the result that at least a portion of the carbon dioxide and/or mold spores and other impurities in the air are trapped in the carbon dioxide filter. After the filtering, the filter is regenerated and the carbon dioxide and/or mold spores trapped in it are removed by a technique whereby air heated by a thermal resistor (20) is passed through the filter, this air preferably consisting of the same air to be filtered.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: October 13, 2009
    Assignee: Oy Hydrocell Ltd.
    Inventors: Markku Lampinen, Tomi Anttila, Keijo Rauhala
  • Patent number: 7591880
    Abstract: A method of operating a fuel cell system includes providing a fuel inlet stream into a fuel cell stack, operating the fuel cell stack to generate electricity and a hydrogen containing fuel exhaust stream, separating at least a portion of hydrogen contained in the fuel exhaust stream using partial pressure swing adsorption, and providing the hydrogen separated from the fuel exhaust stream into the fuel inlet stream.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: September 22, 2009
    Assignee: Bloom Energy Corporation
    Inventors: M. Douglas Levan, John E. Finn, James F. McElroy
  • Publication number: 20090229461
    Abstract: A method and an apparatus for desorption and a dehumidifier are provided in the present invention, in which an electrical potential is applied to electrodes disposed on both ends of an absorbing material so as to desorb the substances absorbed within the absorbing material whereby the absorbing material is capable of being maintained for cycling the absorbing operation. By means of the method and the apparatus of the present invention, the desorbing efficiency can be enhanced and the energy consumption can be reduced during desorption.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 17, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: MING-SHAN JENG, MING-SHIANN SHIH, JAU-CHYN HUANG, YU-LI LIN, YA-WEN CHOU, TING-WEI HUANG, YU-MING CHANG
  • Publication number: 20090229346
    Abstract: A method of detecting a molecular species in an electronics processing environment is disclosed. The method exposes a capture substrate to the processing environment. The capture substrate has a surface area different from the surface area of an electronic substrate undergoing electronics processing. The molecular species is transferred from the environment to the capture substrate. A characteristic of the molecular species is identified, thereby detecting the species. Other methods utilize a capture substrate to remove the molecular species from an electronic processing environment, or use the capture substrate to determine the presence of a molecular species in a transfer container operating between two process environments or two intermediate process steps. Systems for carrying out the methods are also disclosed.
    Type: Application
    Filed: July 31, 2006
    Publication date: September 17, 2009
    Inventors: Daniel Alvarez, JR., Troy B. Scoggins, Jeffrey J. Spiegelman