Apparatus For Selective Diffusion Of Gases (e.g., Semipermeable Membrane, Etc.) Patents (Class 96/4)
  • Patent number: 8764889
    Abstract: There is provided a silica membrane filter having performance of selectively separating an aromatic compound and performance of selectively separating an alcohol. The silica membrane filter is provided with a porous substrate and a silica membrane. The ratio of a He gas permeation amount to an N2 gas permeation amount (He gas permeation amount/N2 gas permeation amount) is 7 or less, and the ratio of the N2 gas permeation amount to a SF6 gas permeation amount (N2 gas permeation amount/SF6 gas permeation amount) is 1.5 or more.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: July 1, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Mariko Takagi, Kenichi Noda, Nobuhiko Mori, Masaaki Kawai, Aya Satoh
  • Patent number: 8758491
    Abstract: A gas separation membrane comprises aromatic polyimide polymers that comprise a plurality of repeating units of formula (I) wherein X1 and Ar are herein defined.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: June 24, 2014
    Assignee: Honeywell International Inc.
    Inventors: Grace Guo, Stephen Yates, Zhongxi Huang, Jeffrey Han, Mengshi Lu
  • Patent number: 8758489
    Abstract: A radial seal is described for use in a filtration system having annular elements. The rings or annuli fit in a groove in an outer surface of a seal plate. Each annulus has an outer diameter larger than the inner diameter of a cylindrical housing of the filtration system. A gap in the annulus has a width selected to enable the annular element to deform sufficiently to permit insertion of the at least one annulus into the cylindrical housing. Two or more annuli can be configured such that the gaps of the annuli are misaligned when both annuli are installed in the groove, thereby minimizing leakage in operation. A registration system includes a registration element that cooperates with a registration element of the other annulus to ensure misalignment of the gaps of the pair of annuli.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 24, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Curtis J. Elwell, Frederick K. Lesan, Victor Verbeek, Peter F. Metcalfe
  • Patent number: 8758488
    Abstract: Vents for containers include a perforated substrate portion (20) of polymer material over which is thermally bonded a gas permeable membrane (30). The thermal bond (31) is direct and adhesive-free so that there is no adhesive available for chemical attachment by materials within the containers (58) and no opportunity for an adhesive to interfere with or block perforations through the substrate.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: June 24, 2014
    Assignee: Nuclear Filter Technology, Inc.
    Inventor: Terry J. Wickland
  • Patent number: 8753433
    Abstract: The invention relates to a diaphragm pipe for permeative separation of hydrogen from gas mixtures containing hydrogen, a method for the production thereof as well as a reactor comprising a diaphragm pipe, wherein the diaphragm pipe comprises a porous pipe (S) made of a sintered metal and a diaphragm (M) containing palladium or made of palladium enclosing the outer surface of the sintered metal pipe (S). The sintered metal pipe (S) has at least on one end a fitting (F) made of gasproof material, which is firmly connected with the sintered metal pipe (S).
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 17, 2014
    Assignee: Plansee SE
    Inventors: Wolfgang Haring, Nicole Schodel, Axel Behrens, Klaus Klapper, Matthias Ruttinger, Karlheinz Scheiber, Markus Kogl, Marco Brandner
  • Patent number: 8753426
    Abstract: The invention describes a polymeric material comprising repeating units of Formulae I-III and methods of preparation. Novel polymeric materials, gas separation membranes and fluid component separation methods are also described.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: June 17, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Shiying Zheng, Jeffrey Raymond Quay
  • Publication number: 20140157985
    Abstract: An apparatus for removing water vapor from a feed gas is provided that comprises a membrane housing, a membrane that divides a first pressure side and a second pressure side of the membrane housing, a feed gas inlet and outlet on the first pressure side, a sweep gas inlet and outlet on the second pressure side, a sweep gas flow regulator, and a pump. In some embodiments the feed gas can be at ambient pressure and a pressure drop across the membrane can be less than about 1 atm. In some embodiments the sweep gas can be a portion of the feed gas exiting the first pressure side. Some embodiments are part of air conditioning, drying, or water recovery systems. Additionally, some embodiments achieve dew points of less than 0° C. and dehumidification efficiencies of 200% to 600%.
    Type: Application
    Filed: May 3, 2012
    Publication date: June 12, 2014
    Applicant: University of Mississippi
    Inventors: Paul Scovazzo, Anthony J. Scovazzo
  • Patent number: 8747766
    Abstract: A hydrogen separation membrane comprising a palladium alloy that includes at least palladium, an added metal A, and an added metal B, the added metal A and the added metal B being two different metals other than palladium, each of the added metal A and the added metal B forming a complete solid solution with palladium, and the added metal A and the added metal B having a triple point in an equilibrium diagram and not forming an intermetallic compound. The hydrogen separation membrane exhibits excellent hydrogen permeability and durability.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 10, 2014
    Assignee: NGK Insulators, Ltd.
    Inventor: Kenichi Noda
  • Publication number: 20140150649
    Abstract: A system for supplying an aircraft with inert gas is provided. The system includes at least one fuel cell with an air inlet and an exhaust air outlet as well as a membrane device with an inlet, an outlet and a vapor-permeable membrane. The exhaust air outlet is in fluid communication with the inlet of the membrane device. The membrane device guides a gas from the inlet to the outlet and to give off to the outside through the membrane any water vapor contained therein. This leads to a cost efficient, passive and reliable dehumidifaction of inert exhaus gas for inerting purposes, and a dehumidification device that does not or only marginally increases the weight of the aircraft.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 5, 2014
    Inventors: Ralf-Henning Stolte, Johannes Lauckner, Gwenaelle Renouard-Vallet
  • Publication number: 20140144321
    Abstract: In the carbon dioxide separation system, a mixed gas having a carbon dioxide concentration of 3 to 75% is introduced into a primary carbon dioxide separation device equipped with a zeolite membrane for carbon dioxide separation to produce a primary permeated gas having a carbon dioxide concentration of 80% or more on the permeate side of the zeolite membrane and also reduce the carbon dioxide concentration of a primary gas on the non-permeate side of the zeolite membrane to 3 to 15%. Next, the primary gas on the non-permeate side is introduced into a secondary carbon dioxide separation device that employs an amine absorption method or a pressure swing adsorption (PSA) method to produce a secondary separated gas having a carbon dioxide concentration of 80% or more separated by the separation device and also produce a carbon-dioxide-removed gas having a carbon dioxide concentration of 2% or less.
    Type: Application
    Filed: May 10, 2012
    Publication date: May 29, 2014
    Applicant: HITACHI ZOSEN CORPORATION
    Inventors: Ken-ichi Sawamura, Yoshinobu Takaki, Yoshihiro Asari
  • Patent number: 8734568
    Abstract: The present invention relates to an asymmetric hollow fiber membrane for gas separation made of a soluble aromatic polyimide, wherein an orientation index is 1.3 or less, a separation coefficient ?(P?O2/P?N2) as a permeation rate ratio of oxygen gas/nitrogen gas at 40° C. is 5.3 or more, and a tensile fracture elongation is 15% or more.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: May 27, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Hiroki Hisamori, Tatsuya Hayashi, Seiji Morihashi, Tomonori Kanougi
  • Patent number: 8734573
    Abstract: An object is to provide a vent plug having a structure in which an air-permeable membrane is unlikely to be damaged. More specifically, a vent plug is produced, which includes: a cylindrical member 1 having a through-hole 1a; a support 2 connected to the cylindrical member 1 so as to be across the through-hole 1a; and an air-permeable membrane 3 circumferentially attached to the cylindrical member 1, wherein the air-permeable membrane 3 is held on the support 2 and a convex portion 3a that follows the shape of the support 2 is formed on the air-permeable membrane 3.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 27, 2014
    Assignee: W. L. Gore & Associates, Co., Ltd.
    Inventors: Masashi Ono, Hiroshi Manabe
  • Patent number: 8734567
    Abstract: Disclosed herein is a method for preparing a crosslinked hollow fiber membrane. The method involves spinning a one phase solution comprising a monoesterified polyimide polymer, acetone as a volatile solvent, a spinning solvent, a spinning non-solvent, and optionally an organic and/or inorganic additive, wherein the volatile solvent is present in an amount of greater than 25 wt. % to about 50 wt. %, based on the total weight of the solution.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 27, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Shabbir Husain
  • Patent number: 8734574
    Abstract: A gas separation membrane is provided which has both excellent gas permeability and gas separation characteristics, particularly permeability of carbon dioxide (CO2) and separation characteristics of carbon dioxide and methane (CH4), at such a high level that has not hitherto been achieved. The gas separation membrane was obtained by heat treating a membrane composed of a hyperbranched polyimide-based material in a non-oxidizing atmosphere.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: May 27, 2014
    Assignees: Ibiden Co., Ltd., National University Corporation Kyoto Institute of Technology
    Inventors: Tomoyuki Suzuki, Yasuharu Yamada
  • Patent number: 8734569
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 27, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20140138317
    Abstract: The present invention generally relates to gas separation membranes and, in particular, to high selectivity fluorinated ethylene-propylene polymer-comprising polymeric blend membranes for gas separations. The polymeric blend membrane comprises a fluorinated ethylene-propylene polymer and a second polymer different from the fluorinated ethylene-propylene polymer. The fluorinated ethylene-propylene polymers in the current invention are copolymers comprising 10 to 99 mol % 2,3,3,3-tetrafluoropropene-based structural units and 1 to 90 mol % vinylidene fluoride-based structural units. The second polymer different from the fluorinated ethylene-propylene polymer is selected from a low cost, easily processable glassy polymer.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Changqing Lu, Andrew J. Poss, Rajiv R. Singh
  • Publication number: 20140137736
    Abstract: The present invention relates to silicone compositions that are useful for the production of membranes that are selectively permeable to at least one component of a gas mixture. The invention provides a method of forming the membrane. The invention also provides a method of separating components in a feed mixture using the membrane. The membrane includes a reaction product (e.g. cured product) of a silicone composition including an organopolysiloxane having at least two unsaturated aliphatic carbon-carbon bond-containing groups per molecule; a crosslinking agent having at least two silicon-bonded hydrogen atoms per molecule; a hydrosilylation catalyst; a polyether containing at least one unsaturated aliphatic carbon-carbon bond-containing group; and a siliceous filler.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 22, 2014
    Applicant: Dow Corning Corporation
    Inventors: Dongchan Ahn, Aaron J. Greiner, James S. Hrabal, Christopher Wong
  • Publication number: 20140138314
    Abstract: A fluorinated ethylene-propylene polymeric membrane comprising a copolymer comprising 2,3,3,3-tetrafluoropropene and vinylidene fluoride is disclosed. The fluorinated ethylene-propylene polymeric membranes of the invention are especially useful in gas separation processes in air purification, petrochemical, refinery, and natural gas industries.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Howie Q. Tran, Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl L. Cantlon
  • Patent number: 8728181
    Abstract: The inventive stage system for producing hydrogen consists of at least two upstream/downstream stages, respectively, each of which comprises, optionally, a catalytic reactor (C1 to C5) followed by a separator comprising a space (E1 to E4) for circulation of a gaseous mixture contacting at least one oxygen extracting membrane and a hydrogen collecting space, wherein the reactor (C1) of the upstream stage is connected to a reaction gaseous mixture source, the circulation stage (E1) of the upstream stage separator is connected to the reactor (C2) of the downstream stage and the spaces for extracting/collecting oxygen from two separators are connected to a hydrogen collecting circuit (TC, 8) which is common for two stages.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 20, 2014
    Assignee: Compagnie Europeenne des Technologies de l'Hydrogene (C.E.T.H.)
    Inventors: Eric Gernot, Arnaud Deschamps
  • Patent number: 8728214
    Abstract: The invention relates to a gas transfer device comprising at least two chambers and at least one gas-permeable and liquid-impermeable membrane, wherein the chambers are separated from one another by the membrane(s), and wherein the membrane(s) is/are structured on at least one side and channels and/or branching structures, in particular branched pathways, are formed on the membrane by this structure, the walls of which have a spacing of ?500 ?m, preferably of ?350 ?m, and more preferably of ?150 ?m, and the proportion of the membrane surface area which comprises channels and/or branching structures having this spacing constitutes at least 50% of the total surface area of the membrane.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: May 20, 2014
    Assignee: Novalung GmbH
    Inventor: Andreas Maurer
  • Patent number: 8728201
    Abstract: Carbon dioxide is separated from a flue gas produced in a combustion plant. Flue gas is supplied to a membrane unit having at least one membrane module provided with a membrane that is selective for CO2. A portion of the CO2 is separated from the flue gas in the module, producing a CO2-enriched permeate. CO2-depleted flue gas remaining on the retentate side of the module is supplied to at least one additional CO2 separating unit and a portion of the CO2 in the retentate is separated by an absorbent. The result is a reduction in energy consumption.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 20, 2014
    Assignee: Forshungszentrum Juelich GmbH
    Inventors: Jewgeni Nazarko, Ernst Riensche, Martin Bram, Li Zhao
  • Patent number: 8728199
    Abstract: Provided is a novel hydrogen separation membrane formed of a Nb—W—Mo-based alloy. A method for separating hydrogen using the hydrogen separation membrane and hydrogen separation conditions are selected by a particular procedure. A hydrogen separation membrane formed of the Nb—W—Mo-based alloy membrane.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 20, 2014
    Assignees: Tokyo Gas Co., Ltd., National University Corporation Nagoya University, Institute of National Colleges of Technology, Japan
    Inventors: Hideto Kurokawa, Takumi Nishii, Yoshinori Shirasaki, Isamu Yasuda, Masahiko Morinaga, Hiroshi Yukawa, Tomonori Nanbu, Yoshihisa Matsumoto
  • Patent number: 8728213
    Abstract: A radial seal is described for use in a filtration system having annular elements. The rings or annuli fit in a groove in an outer surface of a seal plate. Each annulus has an outer diameter larger than the inner diameter of a cylindrical housing of the filtration system. A gap in the annulus has a width selected to enable the annular element to deform sufficiently to permit insertion of the at least one annulus into the cylindrical housing. Two or more annuli can be configured such that the gaps of the annuli are misaligned when both annuli are installed in the groove, thereby minimizing leakage in operation. A registration system includes a registration element that cooperates with a registration element of the other annulus to ensure misalignment of the gaps of the pair of annuli.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 20, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Curtis J. Elwell, Frederick K. Lesan, Victor Verbeek, Peter J. Metcalfe
  • Publication number: 20140131263
    Abstract: A barrier of open pore mesh provided with a superhydrophobic coating to prevent wetting when exposed to an aqueous liquid. The disclosed barrier could be a mesh screen or a liquid pervious membrane. The barrier is useful in a filter media containment to permit egress of gas, usually air, from the containment even when subjected to an aqueous liquid containing environment.
    Type: Application
    Filed: July 10, 2012
    Publication date: May 15, 2014
    Applicant: ILLINOIS TOOL WORKS INC
    Inventor: Clyde H. Bachand
  • Patent number: 8721890
    Abstract: A dehydrating system using multiple water separation membranes aims to prevent damage to the water separation membrane units and also to take appropriate measures against decrease in water permeation rate of the water separation membranes. Provided is a dehydrating system (100) for removing water from a target fluid, including at least two water separation membrane units (1, 2, 3) connected in series in a flow direction of the target fluid; two or more heat exchangers (11, 21, 31) respectively provided in front of the water separation membrane units (1, 2, 3), each of the heat exchangers (11, 21, 31) raising a temperature of the target fluid to a temperature which is lower than a boiling point of the target fluid but close to the boiling point.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Haruaki Hirayama, Kazuto Kobayashi, Yukio Tanaka
  • Patent number: 8721774
    Abstract: Disclosed is a gas separation composite membrane comprising a polyamidoamine dendrimer (A) having a specific group, a vinyl alcohol-based polymer (B) containing 0.5 to 5 mol % of carboxyl groups, and a crosslinking agent (C) having an azetidinium group, wherein the mass ratio (A)/(C) of the polyamidoamine dendrimer (A) to the crosslinking agent (C) having an azetidinium group is 20/80 to 65/35, and the mass ratio (B)/(C) of the vinyl alcohol-based polymer (B) to the crosslinking agent (C) having an azetidinium group is 20/80 to 80/20. Thus, a gas separation composite membrane capable of separating a specific type of gas from a mixed gas containing water vapor is provided.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 13, 2014
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Shushi Asano, Yoshiki Nobuto, Naoki Fujiwara, Shuhong Duan, Shingo Kazama
  • Patent number: 8721766
    Abstract: A porously coated, densely sintered ceramic membrane, which can be produced from a green membrane and subsequent sintering. The membrane is coated with ceramic material, which contains noble metals, which can be produced by application and subsequent thermal treatment. The noble metals are contained at a concentration of 2.5 to 5 mass percent.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: May 13, 2014
    Assignee: Thyssenkrupp UHDE GmbH
    Inventors: Steffen Schirrmeister, Bernd Langanke, Bjoern Hoting
  • Patent number: 8721756
    Abstract: The filter of the invention is a cartridge filter comprising a structure that can maintain a filter medium in an air stream to filter particulates to protect a gas turbine power system. The filter combines a mechanically adequate filter structure and an effective filter medium for to obtain a useful system.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 13, 2014
    Assignee: Donaldson Company, Inc.
    Inventors: Michael W. Handley, Mark Brandenhoff, Kirit Patel, Timothy D. Sporre
  • Publication number: 20140127093
    Abstract: The present application relates to a hydrogen ion transport membrane, which is formed by using a porous thin film having a plurality of holes which are regularly aligned, a membrane for generating hydrogen, and a method for manufacturing the hydrogen ion transport membrane and the membrane for generating hydrogen.
    Type: Application
    Filed: April 12, 2012
    Publication date: May 8, 2014
    Applicant: SOGANG UNIVERSITY RESEARCH FOUNDATION
    Inventors: Kyung Byung Yoon, Hyun Sung Kim
  • Patent number: 8715392
    Abstract: Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO2 from gas streams such as flue gas streams. High CO2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0×10?6 mol/(m2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Battelle Memorial Institute
    Inventor: Wei Liu
  • Patent number: 8715391
    Abstract: A high temperature filter containing a membrane, a support substrate, and a porous adhesive layer. The porous adhesive layer is adjacent the inner surface of the membrane and the inner surface of the support substrate such that the membrane and the support substrate sandwich the porous adhesive layer. The porous adhesive layer comprises an adhesive having an adhesive operating temperature of at least about 450° F. The support substrate is a woven textile, a non-woven textile, a knit textile, or a film, and has a support operating temperature of at least about 500° F.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: May 6, 2014
    Assignee: Milliken & Company
    Inventors: Yunzhang Wang, Paul J. Wesson, Kirkland W. Vogt
  • Patent number: 8715382
    Abstract: A ventilation member (100) of the invention includes a tubular part (11), a gas permeable filter (19), and a cover part (31). In an attached state where the tubular part (11) is fit into the cover part (31), gaps functioning as gas passages (AR2 and AR3) are formed between a bottom portion (35) of the cover part (31) and the gas permeable filter (19) and between a side wall portion (39) of the cover part (31) and a body portion (17) of the tubular part (11). The opening area (S2) of a filter-end opening (15) with respect to an in-plane direction (WL) perpendicular to the thickness direction of the gas permeable filter (19) is larger than the opening area (S1) of a connection-end opening (13) with respect to the in-plane direction (WL).
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 6, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Satoru Furuyama, Toshiki Yanagi
  • Patent number: 8709132
    Abstract: In some implementations, a system for disassociating water includes a decomposition chamber, a heating element, a plurality of hollow fiber membranes, and a water inlet. The heating element is positioned in the decomposition chamber and configured to generate heat sufficient to dissociate at least a portion of water to hydrogen and oxygen. The plurality of hollow fiber membranes include at least a section of each hollow fiber membrane that passes through the decomposition chamber and has an inner conduit and an outer wall. The inner conduit for each hollow fiber membrane is configured to pass a sweep gas, and the outer wall for each hollow fiber membrane is configured to selectively pass either oxygen or hydrogen. The water inlet connected to the decomposition chamber and configured to pass water vapor into the decomposition chamber.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: April 29, 2014
    Assignee: Stellar Generation, LLC
    Inventor: Jerome Lee Elkind
  • Patent number: 8709133
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 29, 2014
    Assignees: Georgia Tech Research Corporation, Shell Oil Company
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Publication number: 20140112836
    Abstract: A separation membrane including: an alloy including a Group 5 element, Fe, and Al, wherein the alloy includes a body-centered cubic lattice structure.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kwang Hee KIM, Hyeon Cheol PARK, Jae-Ho LEE, Eun Seog CHO
  • Publication number: 20140102297
    Abstract: The invention relates to methods for separating CO2 from mixed gases. A stream of mixed gases passes one side of a facilitated transport membrane, while a sweep fluid, such as steam, passes the other side of the membrane, removing the CO2. The method is especially useful in the removal of CO2 from gases produced by internal combustion engines on mobile devices.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 17, 2014
    Applicant: Saudi Arabian Oil Company
    Inventors: Esam Zaki HAMAD, Ahmed A. Bahamdan, Feras Hamad, Garba Oloriegbe Yahaya, Wajdi Issam Al-sadat
  • Publication number: 20140102884
    Abstract: A solvent composition comprising an organic solvent; dispersed nanoparticles; and a non-volatile electrolyte is provided. A method of forming a liquid composite composition is provided.
    Type: Application
    Filed: September 23, 2013
    Publication date: April 17, 2014
    Applicant: eSionic ES, Inc.
    Inventor: Seth A. Miller
  • Patent number: 8696795
    Abstract: The invention relates to a method of separating oxygen from an oxygen containing gas, said method comprising the steps of: compressing and heating the oxygen containing gas in a plasma pump (16), guiding the heated and compressed oxygen containing gas to the primary side of a dense inorganic membrane (58), thereby heating the inorganic membrane by the oxygen containing gas to a temperature at which it is permeable for oxygen, and creating a pressure difference between the primary side and a secondary side of the inorganic membrane (58), wherein an oxygen flow through the inorganic membrane (58) is created, thereby separating the oxygen from the oxygen containing gas.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 15, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Rainer Hilbig
  • Patent number: 8696794
    Abstract: A passive phase separator separates and traps gases that may be present in a liquid flowing through a system. The phase separator includes an inlet in fluid communication with a first separator chamber and an outlet in fluid communication with a second separator chamber that is disposed annularly about the first separator chamber. Gas introduced into the first separator chamber is pushed downstream through the first separator chamber to a gas storage chamber. Once gas is trapped within the gas storage chamber it remains there for the entire operational life of the phase separator.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Matthew Vincent Paragano, William Indoe, Jeffrey A. Darmetko
  • Publication number: 20140099584
    Abstract: A system includes a turbomachine including a first chamber configured to contain a first fluid and a second chamber configured to contain a second fluid. The turbomachine also includes a barrier disposed between the first and second chambers. The barrier is configured to separate the first fluid and the second fluid. Additionally, the barrier includes a first surface facing the first chamber and a second surface facing the second chamber. The turbomachine also includes an orifice extending from the first chamber to the second chamber. The orifice defines a fluid passageway. Additionally, the turbomachine includes a tube including a first end and a second end. The first end is coupled to the first surface and is disposed about a perimeter of the orifice. The tube is configured to at least partially contain the second fluid.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mohan Krishna Bobba, Roy Marshall Washam
  • Patent number: 8690994
    Abstract: In at least certain embodiments, the present invention is directed to contactors, modules, components, systems, and/or methods of manufacture, and/or methods of use including degassing liquids. In at least particular possibly preferred embodiments, the contactor or module is integrally potted, has planar, disc shaped end caps, and a cylindrical housing or shell receiving and supporting a membrane structure. In at least particular possibly preferred embodiments, each of the planar disc shaped end caps has a central opening therein adapted to receive a liquid end port or nozzle, another opening therein adapted to receive a gas end port or threaded pipe, and is held in place in the housing or shell by at least one retaining element such as a retaining or locking ring. In at least particular possibly preferred embodiments, the integrally potted membrane structure is potted in place in the housing or shell by an inverted potting process involving the use of a removable plunger or plug to recess the potting.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: April 8, 2014
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Elmer Wayne Bouldin, Jr., Timothy D. Price, Tony R. Vido
  • Publication number: 20140090561
    Abstract: A ventilation member (100) of the invention includes a tubular part (11), a gas permeable filter (19), and a cover part (31). In an attached state where the tubular part (11) is fit into the cover part (31), gaps functioning as gas passages (AR2 and AR3) are formed between a bottom portion (35) of the cover part (31) and the gas permeable filter (19) and between a side wall portion (39) of the cover part (31) and a body portion (17) of the tubular part (11). The opening area (S2) of a filter-end opening (15) with respect to an in-plane direction (WL) perpendicular to the thickness direction of the gas permeable filter (19) is larger than the opening area (S1) of a connection-end opening (13) with respect to the in-plane direction (WL).
    Type: Application
    Filed: October 18, 2013
    Publication date: April 3, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Satoru FURUYAMA, Toshiki YANAGI
  • Patent number: 8685143
    Abstract: A method of making a supported gas separation molecular sieve membrane. In this method a porous support, which is preferably pretreated, is contacted with a molecular sieve synthesis mixture under hydrothermal synthesis conditions. The contacting step is conducted for a shortened crystallization time period. The resulting coated porous support is calcined to yield the supported gas separation molecular sieve membrane having particularly good gas separation characteristics.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: April 1, 2014
    Assignees: Shell Oil Company, The Regents of the University of Colorado, a Body Corporate
    Inventors: Moises Abraham Carreon, Zaida Diaz, John Lucien Falconer, Hans Heinrich Funke, Shiguang Li, Brendan Dermot Murray, Richard Daniel Noble, Paul Jason Williams
  • Patent number: 8685149
    Abstract: A breather 2 on a top of a tank body 1 is opened through a carbon dioxide permeable membrane 3 to an atmospheric air so as to take an inert gas containing plenty of carbon dioxide permeated through the membrane 3 into the tank body 1 by a negative pressure due to reduction of a fuel F in the tank body 1.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 1, 2014
    Assignee: Hino Motors, Ltd.
    Inventor: Noboru Uchida
  • Patent number: 8685145
    Abstract: The present invention relates to systems and methods for dehumidifying air by establishing humidity gradients in a plurality of dehumidification units, which are arranged in series and/or in parallel. Water vapor from air entering each stage of the plurality of dehumidification units is extracted by the dehumidification units without substantial condensation into low pressure water vapor chambers. For example, in one embodiment, the water vapor is extracted through water vapor permeable membranes of the dehumidification units into the low pressure water vapor chambers. As such, the air exiting each of the dehumidification units is less humid than the air entering the dehumidification units. The low pressure water vapor extracted from the air is subsequently compressed to a slightly higher pressure (i.e., just high enough to facilitate condensation), condensed, and removed from the system at ambient conditions.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 1, 2014
    Assignee: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp, Jeffrey S. Haberl
  • Patent number: 8685144
    Abstract: The present invention relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 1, 2014
    Assignee: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp, Jeffrey S. Haberl
  • Patent number: 8685142
    Abstract: The present invention relates to systems and methods for dehumidifying air by establishing humidity gradients in one or more dehumidification units. Water vapor from relatively humid atmospheric air entering the dehumidification units is extracted by the dehumidification units without substantial condensation into low pressure water vapor vacuum volumes. The water vapor is extracted through water vapor permeable membranes of the dehumidification units into the low pressure water vapor vacuum volumes. The air exiting the dehumidification units is less humid than the air entering the dehumidification units. The low pressure water vapor extracted from the air is compressed to a slightly higher pressure, condensed, and removed from the system at ambient conditions. In addition, each of the dehumidification units may be associated with one or more evaporative cooling units through which the air will be directed, with the evaporative cooling units being upstream and/or downstream of the dehumidification units.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 1, 2014
    Assignee: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp, Jeffrey S. Haberl
  • Patent number: 8679227
    Abstract: The present invention provides methods for making improved zeolite and crystalline silicoaluminophosphate (SAPO) membranes, in particular SAPO-34 membranes, on a porous support through improved removal of the organic structure-directing templating agent. A calcining step is performed in an oxygen free atmosphere, such as under a vacuum or inert gas, to remove the organic templating agent. By removing the templating agent in the absence of oxygen, the calcination step can remove a greater amount of the templating agent than comparable template removal steps conducted in the presence of oxygen and the calcination step can be conducted at significantly lower temperatures. The membranes of the present invention provide increased permeance while maintaining comparable selectivity for gas separations, particularly carbon dioxide (CO2) and methane (CH4) separations and separations at high temperatures.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 25, 2014
    Assignee: The Regents of the University of Colorado
    Inventors: John L. Falconer, Richard D. Noble, Begum Tokay, Yanfeng Zhang
  • Publication number: 20140079589
    Abstract: Filter assemblies that comprise a temporary attachment mechanism disposed on a surface of a filter are disclosed, as well as methods and systems related to using such filter assemblies during sterilization. The disclosed filter assemblies can include sterilization indicator elements.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 20, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kevin D. Landgrebe, Susan K. Reed, Daniel R. McIntyre
  • Publication number: 20140076728
    Abstract: Disclosed herein is a membrane separation apparatus with reduced concentration polarization and enhanced permeate flux. Also disclosed is a method for separating permeate from retentate in a fluid using the disclosed membrane separation apparatus. Also disclosed is a method for inhibiting or preventing concentration polarization of a permeable membrane used in membrane separation.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 20, 2014
    Applicant: Ohio State Innovation Foundation
    Inventors: Shaurya Prakash, Karen Bellman