Patents Represented by Attorney Charles S. Guenzer
  • Patent number: 7108746
    Abstract: A silicon-based wafer support tower particularly useful for batch-mode thermal chemical vapor deposition. The surfaces of the silicon tower are bead blasted to introduce sub-surface damage, which produces pits and cracks in the surface, which anchor subsequently deposited layer of, for example, silicon nitride, thereby inhibiting peeling of the nitride film. The surface roughness may be in the range of 250 to 2500 ?m. Wafer support portions of the tower are preferably composed of virgin polysilicon. The invention can be applied to other silicon parts in a deposition or other substrate processing reactor, such as tubular sleeves and reactor walls. Tubular silicon members are advantageously formed by extrusion from a silicon melt.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: September 19, 2006
    Assignee: Integrated Materials, Inc.
    Inventors: Ranaan Y. Zehavi, James E. Boyle
  • Patent number: 7083694
    Abstract: A method of joining two silicon members, the adhesive used for the method, and the joined product, especially a silicon tower for supporting multiple silicon wafers. A flowable adhesive is prepared comprising silicon particles of size less than 100 ?m and preferably less than 100 nm and a silica bridging agent, such as a spin-on glass. Nano-silicon crystallites of about 20 nm size may be formed by CVD. Larger particles may be milled from virgin polysilicon. If necessary, a retardant such as a heavy, preferably water-insoluble alcohol such as terpineol is added to slow setting of the adhesive at room temperature. The mixture is applied to the joining areas. The silicon parts are assembled and annealed at a temperature sufficient to link the silica, preferably at 900° C. to 1100° C. for nano-silicon but higher for milled silicon.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: August 1, 2006
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Raanan Zehavi, Amnon Chalzel
  • Patent number: 7074693
    Abstract: A method of joining two silicon members and the bonded assembly in which the members are assembled to place them into alignment across a seam. Silicon derived from silicon powder is plasma sprayed across the seam and forms a silicon coating that bonds to the silicon members on each side of the seam to thereby bond together the members. The plasma sprayed silicon may seal an underlying bond of spin-on glass or may act as the primary bond, in which case through mortise holes are preferred so that two layers of silicon are plasma sprayed on opposing ends of the mortise holes. A silicon wafer tower or boat may be the final product. The method may be used to form a ring or a tube from segments or staves arranged in a circle. Plasma spraying silicon may repair a crack or chip formed in a silicon member.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: July 11, 2006
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Laurence D. Delaney
  • Patent number: 7041201
    Abstract: One aspect of the invention includes an auxiliary magnet ring positioned outside of the chamber wall of a plasma sputter reactor and being disposed at least partially radially outwardly of an RF coil used to inductively generate a plasma, particularly for sputter etching the substrate being sputter deposited. Thereby, a magnetic barrier prevents the plasma from leaking outwardly to the coil and improves the uniformity of sputter etching. The magnetic field also acts as a magnetron when the coil, when made of the same material as the primary target, is being used as a secondary target. Another aspect of the invention includes a one-piece inner shield extending from the target to the pedestal with a smooth inner surface and supported by an annular flange in a middle portion of the shield. The shield may be used to support the RF coil.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: May 9, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Tza-Jing Gung, Xianmin Tang, John Forster, Peijun Ding, Marc Schweitzer, Keith A. Miller, Ilya Lavitsky
  • Patent number: 7041931
    Abstract: In a system for thermal processing of a semiconductor substrate, a reflector plate has a stepped surface facing the substrate during heating and cooling of the substrate. The raised surface of the reflector plate has reduced reflectivity, providing advantages during, among other things, cooling of the substrate. The reflector plate also includes a number of recesses to which one or more pyrometers are coupled. These recesses have a highly reflective surface, providing advantages in the performance of the pyrometers.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: May 9, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Joseph M. Ranish, Brian Haas, Ajit Balakrishna, Sundar Ramamurthy, Aaron Hunter, Mark Yam
  • Patent number: 7018515
    Abstract: A dual-position magnetron that is rotated about a central axis in back of a sputtering target, particularly for sputtering an edge of a target of a barrier material onto a wafer and cleaning material redeposited at a center of the target. During target cleaning, wafer bias is reduced. In one embodiment, an arc-shaped magnetron is supported on a pivot arm pivoting on the end of a bracket fixed to the rotary shaft. A spring biases the pivot arm such that the magnetron is urged towards and overlies the target center. Centrifugal force at increased rotation rate overcomes the spring bias and shift the magnetron to an outer position with the long magnetron dimension aligned with the target edge. Mechanical stops prevent excessive movement in either direction. Other mechanisms include linear slides and actuators.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: March 28, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Tza-Jing Gung, Hong S. Yang, Anantha K. Subramani, Maurice E. Ewert, Keith A. Miller, Vincent E. Burkhart
  • Patent number: 6991709
    Abstract: A multi-step sputtering process in plasma sputter reactor having target and magnetron operable in two modes, for example, in a substrate sputter etch and a substrate sputter deposition. The target has an annular vault facing the wafer to be sputter coated. Various types of magnetic means positioned around the vault create a magnetic field supporting a plasma extending over a large volume of the vault. An integrated copper via filling process with the inventive reactor or other reactor includes a first step of highly ionized sputter deposition of copper, which can optionally be used to remove the barrier layer at the bottom of the via, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and a third step of electroplating copper into the hole to complete the metallization. The first two steps can be also used with barrier metals.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Wei Wang, Ashok K. Sinha
  • Patent number: 6981349
    Abstract: A roofing system including two techniques that confer water tightness to exposed substrates, whether cimentious or not, used on roofs of current buildings. The system increases reliability of the surfaces against the percolation of water. The system includes the process of applying, on exposed porous or non-porous surfaces (1), mud slab, regularized or not, of concrete, wood, metals, etc., on top of baseboards or parapets (2), a high adherence organic resin (4), that is self-leveling, visco-elastic, thermoplastic and hydrophobic, covered by film strips (5) of aluminum laminated with thermoplastic copolymers, thermally welded at its overlaps (7) by a thermal process and fastened in the vertical surfaces of the structures by groups (6) of screws, plastic washers, and expansion shells. The flow of rain water is guided by pipelines (3) of PVC or other equivalent material.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: January 3, 2006
    Assignee: Fundacao de Amparo a Pesquisa de Estado de Sao Paulo
    Inventor: Celso Martinez, Jr.
  • Patent number: 6979659
    Abstract: A process for hydrogen annealing silicon wafers that have been cut from an ingot and polished on both sides, thereby removing crystal originated pits (COPs) in their surface. The wafers are then stacked in a tower having at least support surfaces made from virgin polysilicon, that is, polysilicon form by chemical vapor deposition, preferably from monosilane. The tower may include four virgin polysilicon legs have support teeth slotted at inclined angles along the legs and fixed at their opposed ends to bases. The wafers so supported on the virgin polysilicon towers are annealed in a hydrogen ambient at 1250° C. for 12 hours.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: December 27, 2005
    Assignee: Integrated Materials, Inc.
    Inventors: Raanan Y. Zehavi, James E. Boyle, Laurence D. Delaney
  • Patent number: 6971832
    Abstract: A wafer load lock and linear delivery system including within a load lock vacuum chamber a paddle cantilevered from a trolley traveling on a single rail extending on a lateral side of the wafer end of the paddle while it is retracted into the load lock chamber. The trolley is magnetically coupled to an external mechanical drive through a vacuum wall of the vacuum chamber which drives the wafer on the paddle into an attached processing chamber. A single wafer may be loaded onto the paddle through a door in the vacuum wall. Alternatively, a cassette of wafers may be loaded into a cassette station opposite the processing chamber. One end of the paddle removes a wafer from the cassette, and a hand off station moves the wafer to a second end of the paddle, which then moves it into the processing chamber.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: December 6, 2005
    Assignee: Transfer Engineering and Manufacturing, Inc.
    Inventors: Michael A. Ackeret, Andrew P. Lunday
  • Patent number: 6961257
    Abstract: Pulse-width modulation (PWM) control and drive circuitry particularly applicable to an array of electrostatic actuators formed in a micro electromechanical system (MEMS), such as used for optical switching. The high-voltage portion may be incorporated in an integrated circuit having drive cells vertically aligned with the MEMS elements. A control cell associated with each actuator includes a register selectively stored with a desired pulse width. A clocked counter distributes its outputs to all control cells. When the counter matches the register, a polarity signal corresponding to a drive clock is latched and controls the voltage applied to the electrostatic cell. The MEMS element may be a tiltable plate supported in its middle by a torsion beam. Complementary binary signals may drive two capacitors formed across the axis of the beam. The register and comparison logic for each cell may be formed by a content addressable memory.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: November 1, 2005
    Assignee: Movaz Networks, Inc.
    Inventors: Steven L. Garverick, Michael L. Nagy
  • Patent number: 6953742
    Abstract: A method of forming barrier layers in a via hole extending through an inter-level dielectric layer and including a preformed first barrier coated onto the bottom and sidewalls of the via holes. In a single plasma sputter reactor, a first step sputters the wafer rather than the target with high energy ions to remove the barrier layer from the bottom of the via but not from the sidewalls and a second step sputter deposits a second barrier layer, for example of Ta/TaN, onto the via bottom and sidewalls. The two steps may be differentiated by power applied to the target, by chamber pressure, or by wafer bias. The second step may include the simultaneous removal of the first barrier layer from the via bottom and sputter deposition of the second barrier layer onto the via sidewalls.
    Type: Grant
    Filed: October 25, 2003
    Date of Patent: October 11, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Seshadri Ganguli, Wei Cao, Christophe Marcadal
  • Patent number: 6935828
    Abstract: A wafer load lock and linear delivery system including within a load lock vacuum chamber a paddle cantilevered from a trolley traveling on a single rail extending on a lateral side of the wafer end of the paddle while it is retracted into the load lock chamber. The trolley is magnetically coupled to an external mechanical, drive through a vacuum wall of the vacuum chamber which drives the wafer on the paddle into an attached processing chamber. A single wafer may be loaded onto the paddle through a door in the vacuum wall. Alternatively, a cassette of wafers may be loaded into a cassette station opposite the processing chamber. One end of the paddle removes a wafer from the cassette, and a hand off station moves the wafer to a second end of the paddle, which then moves it into the processing chamber.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: August 30, 2005
    Assignee: Transfer Engineering and Manufacturing, Inc.
    Inventors: Michael A. Ackeret, Andrew P. Lunday
  • Patent number: 6899796
    Abstract: A two-step method of filling copper into a high-aspect ratio via or dual-damascene structure. The first step sputters at a low temperature of no more than 100° C. and with at least portions of high wafer bias, thereby filling a lower half of the hole. The initial copper sputtering is preferably performed through multiple cycles of low-level and high-level pedestal bias to deposit copper on exposed corners and to sputter resulting overhangs from the corners while depositing deep in the hole. The second step may include either electrochemical plating or sputtering performed at a higher temperature, e.g., at least 200° C. and with lower wafer bias to complete the hole filling. In another aspect of the invention, diffusion promoting gas such as hydrogen is added to the copper sputter plasma.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 31, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Wei D. Wang, Anantha K. Subramani, Jianming Fu, Praburam Gopalraja, Jick M. Yu, Fusen Chen
  • Patent number: 6893541
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). For very high aspect-ratio holes, a copper seed layer is deposited by chemical vapor deposition (CVD) over the SIP copper nucleation layer, and PVD or ECP completes the hole filling. The copper seed layer may be deposited by a combination of SIP and high-density plasma sputtering. For very narrow holes, the CVD copper layer may fill the hole.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: May 17, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Patent number: 6884329
    Abstract: A method of filling copper into a high-aspect ratio via by a plasma sputter process and allowing the elimination of electrochemical plating. In one aspect of the invention, the sputtering is divided into a first step performed at a low temperature of no more than 100° C. and with at least portions of high wafer bias, thereby filling a lower half of the hole, and a second step performed at a higher temperature, e.g., at least 200° C. and with at least portions of low wafer bias to complete the hole filling. In another aspect of the invention, diffusion promoting gas such as hydrogen is added to the copper sputter plasma. In still another aspect, copper sputtering, even in the final fill phase, is performed through multiple cycles of low-level and high-level pedestal bias to deposit copper on exposed corners and to sputter from the corners.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: April 26, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Wei D. Wang, Anantha K. Subramani, Jianming Fu, Praburam Gopalraja, Jick M. Yu, Fusen Chen
  • Patent number: 6875321
    Abstract: An array of auxiliary magnets is disclosed that is positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward the wafer. The auxiliary magnets may be either permanent magnets or electromagnets.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: April 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Peijun Ding, Rong Tao, Zheng Xu
  • Patent number: 6852202
    Abstract: A small unbalanced magnet assembly is scanned in a retrograde planetary or epicyclic path about the back of a target being plasma sputtered including an orbital rotation about the center axis of the target and a planetary rotation about another axis rotating about the target center axis. The magnet assembly may pass through the target center, thus allowing full target coverage. A geared planetary mechanism may include a rotating drive plate, a fixed center gear, and an idler and a follower gear rotatably supported in the drive plate supporting a cantilevered magnet assembly on the side of the drive plate facing the target. The erosion profile may be controlled by varying the rotation rate through the rotation cycle or by modulating the target power. A second planetary stage may be added or non-circular gears be used. Auxiliary electromagnetic coils may create a focusing magnetic field.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: February 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael Andrew Miller, James H. Tsung, Daniel C. Lubben, Ilyoung Richard Hong, Peijun Ding
  • Patent number: 6849193
    Abstract: An oxide etching process, particularly useful for selectively etching oxide over a feature having a non-oxide composition, such as silicon nitride and especially when that feature has a corner that is prone to faceting during the oxide etch. The invention uses a heavy perfluorocarbon, for example, hexafluorobutadiene (C4F6) or hexafluorobenzene (C6F6). The fluorocarbon together with a substantial amount of a noble gas such as argon is excited into a high-density plasma in a reactor which inductively couples plasma source power into the chamber and RF biases the pedestal electrode supporting the wafer. A more strongly polymerizing fluorocarbon such as difluoromethane (CH2F2) is added in the over etch to protect the nitride corner. Oxygen or nitrogen may be added to counteract the polymerization. The same chemistry can be used in a magnetically enhanced reactive ion etcher (MERIE) or with a remote plasma source.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: February 1, 2005
    Inventors: Hoiman Hung, Joseph P Caulfield, Hongqing Shan, Ruiping Wang, Gerald Zheyao Yin
  • Patent number: 6841050
    Abstract: A small magnet assembly is scanned in a retrograde planetary or epicyclic path about the back of a target being plasma sputtered including an orbital rotation about the center axis of the target and a planetary rotation about another axis rotating about the target center axis. The magnet assembly passes through the target center, thus allowing full target coverage. A properly chosen ratio of the two rotations about respective axes produces a much slower magnet velocity near the target periphery than at the target center. A geared planetary mechanism includes a rotating drive plate, a fixed center gear, and an idler and a follower gear rotatably supported in the drive plane supporting a cantilevered magnet assembly on the side of the drive plate facing the target. A belted planetary mechanism includes a fixed center capstan, a follower pulley supporting the magnet assembly, and a belt wrapped around them.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: January 11, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ilyoung Richard Hong, James Tsung, Daniel Clarence Lubben, Peijun Ding, Nirmalya Maity