Patents Represented by Attorney, Agent or Law Firm David E. Steuber
  • Patent number: 7405452
    Abstract: A semiconductor device includes a field shield region that is doped opposite to the conductivity of the substrate and is bounded laterally by dielectric sidewall spacers and from below by a PN junction. For example, in a trench-gated MOSFET the field shield region may be located beneath the trench and may be electrically connected to the source region. When the MOSFET is reverse-biased, depletion regions extend from the dielectric sidewall spacers into the “drift” region, shielding the gate oxide from high electric fields and increasing the avalanche breakdown voltage of the device. This permits the drift region to be more heavily doped and reduces the on-resistance of the device. It also allows the use of a thin, 20 ? gate oxide for a power MOSFET that is to be switched with a 1V signal applied to its gate while being able to block over 30V applied across its drain and source electrodes, for example.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 29, 2008
    Inventor: Hamza Yilmaz
  • Patent number: 7394150
    Abstract: A semiconductor package includes a die that is interposed, flip-chip style, between an upper lead frame and a lower lead frame. The lower lead frame has contacts that are aligned with terminals on the bottom surface of the die. The upper lead frame contacts a terminal on the top side of the die, and the edges of the upper lead frame are bent downward around the edges of the die, giving the upper lead frame a cup shape. The edge of the upper lead frame contact another portion of the lower lead frame, so that all of the contacts of the package are coplanar and can be surface-mounted on a printed circuit board. The terminals of the die are electrically connected to the lead frames by means of solder layers. The thicknesses of the respective solder layers that connect the die to the lead frames are predetermined to optimize the performance of the package through numerous thermal cycles. This is done by fabricating the lower lead frame with a plurality of mesas and using a double solder reflow process.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: July 1, 2008
    Assignee: Siliconix incorporated
    Inventors: Mohammed Kasem, King Owyang, Frank Kuo, Serge Robert Jaunay, Sen Mao, Oscar Ou, Peter Wang, Chang-Sheng Chen
  • Patent number: 7329583
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: February 12, 2008
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7291884
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: November 6, 2007
    Assignee: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi
  • Patent number: 7282412
    Abstract: The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 16, 2007
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Wayne B. Grabowski
  • Patent number: 7279378
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 9, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7279399
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: October 9, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7276411
    Abstract: The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Wayne B. Grabowski
  • Patent number: 7276431
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 2, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7275252
    Abstract: A microminiature optical disc drive is mounted in a cell phone or other handheld portable device to provide a large data source for playing games, movies and other digital content on the device. The optical disc drive is manufactured to an extremely small form factor by, among other things, employing a blue laser beam and a high numerical aperture lens in the optics assembly.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: September 25, 2007
    Assignee: Vmedia Research, Inc.
    Inventors: Steven B. Volk, Gregory Dimitri Volan
  • Patent number: 7268032
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 11, 2007
    Assignee: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
  • Patent number: 7265434
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 4, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 6514137
    Abstract: In accordance with the present invention, a modular clean room plenum is provided. This modular clean room plenum includes a rectangular plenum body with an air barrier forming a top surface of the modular clean room plenum and a ceiling grid forming a bottom surface of the modular clean room plenum. The modular clean room plenums are attached to the primary support structure of a clean room building in whatever number and configuration is required by the clean room layout. By providing, in one modular component, the air barrier layer, the ceiling grid, the framework between the two layers, the fire sprinkler system, the air transfer ducts, the balancing dampers and all of the normal components of the ceiling grid, the cost and time required for construction can be significantly decreased.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: February 4, 2003
    Inventors: Paul Giulo Panelli, David Emmett Benson, Howard Lyle Gile
  • Patent number: 6489829
    Abstract: Circuits and methods to turn-on a power MOSFET switch while limiting rush current delivered to a load are disclosed. In an exemplary embodiment, a sense circuit senses when the power MOSFET is enhanced by a first level and a second level. A control circuit controls application of three drive forces to the gate of the power MOSFET in response to the sense circuit. The first drive force adjusts the voltage applied to the gate at a first rate. The second drive force adjusts the voltage applied to the gate at a second rate less than the first rate. The third drive force adjusts the voltage applied to the gate at a third rate greater than the second rate. The circuit utilizes most of the allotted turn-on time to linearly control the power MOSFET enhancement, providing optimal slew rate control and limiting the rush current delivered to the load.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 3, 2002
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Tim Wen Hui Yu
  • Patent number: 6465999
    Abstract: A current-limited switch contains a pilot circuit in parallel with a power MOSFET and a reference circuit containing a series of parallel circuits, each of which contains a current mirror MOSFET in parallel with a resistor. A current mirror compensation circuit contains circuitry which shorts out the parallel circuits in sequence as the current through the power MOSFET increases, thereby limiting the size of the current through the power MOSFET. In a preferred embodiment a body control circuit is connected to the power MOSFET to ensure that the body diode in the power MOSFET does not become forward-biased and thereby permit a flow of current through the power MOSFET even when it is turned off.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: October 15, 2002
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Kevin P. D'Angelo
  • Patent number: 6452802
    Abstract: A semiconductor package contains a plurality of sheet metal leads that are attached to one or more terminals on a top side of a semiconductor die. A heat sink is attached to a terminal on a bottom side of the die. Each of the leads extends across the die and beyond opposite edges of the die and is symmetrical about an axis of the die. At the locations where the leads pass over the edges of the die notches are formed on the sides of the leads which face the die, thereby assuring that there is no contact between the leads and the peripheral portion of the top surface of the die. Particularly in power MOSFETs the peripheral portion of the top surface normally contains an equipotential ring which is directly connected to the backside (drain) of the MOSFET, and hence a short between the leads on the top of the die and the equipotential ring would destroy the device. The result is a package that is extremely rugged and that is symmetrical about the axis of the die.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 17, 2002
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Allen K. Lam, Richard K. Williams, Alex K. Choi
  • Patent number: 6417092
    Abstract: An amorphous material containing silicon, carbon, hydrogen and nitrogen, provides a barrier/etch stop layer for use with low dielectric constant insulating layers and copper interconnects. The amorphous material is prepared by plasma assisted chemical vapor deposition (CVD) of alklysilanes together with nitrogen and ammonia. Material that at the same time has a dielectric constant less than 4.5, an electrical breakdown field about 5 MV/cm, and a leakage current less than or on the order of 1 nA/cm2 at a field strength of 1 Mv/cm has been obtained. The amorphous material meets the requirements for use as a barrier/etch stop layer in a standard damascene fabrication process.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 9, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Sanjeev Jain, Somnath Nag, Gerrit Kooi, M. Ziaul Karim, Kenneth P. MacWilliams
  • Patent number: 6403919
    Abstract: A marking system is provided for thin film magnetic disks in which the laser texturing stage in the manufacturing process for magnetic disks is used to form a single track marking zone. In this marking zone, information about the disk is serialized and stored in the form of long and short laser features, representing bits in a binary code. The length of the marking zone can be used to indicate additional information about the disk.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: June 11, 2002
    Assignee: Komag, Incorporated
    Inventor: David V. Salamon
  • Patent number: 6375746
    Abstract: A wafer processing system employing a single-wafer load lock with a cooling unit is disclosed. The small volume of the single-wafer load lock allows for fast pump down and vent cycles. By providing a cooling unit within the load lock, system throughput is further increased by eliminating the need to move a newly processed wafer to a separate cooling station before moving the wafer to the load lock. In another embodiment, the wafer processing system includes a load lock having the capability to both heat and cool a wafer. This further increases throughput in processes where the wafer needs to be pre-heated before putting the wafer in the reactor by eliminating the need for an intermediate pre-heating station.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: April 23, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Craig Stevens, Tony Jakubiec
  • Patent number: 6357721
    Abstract: Valve arrangement, in particular as pulse width modulated expansion valve of a refrigeration system, comprising the following elements: a valve body (1) with a passage opening (5), an armature tube (2) which is inserted into one end of the passage opening (5), an armature (3) which can be moved back and forth in the armature tube (2), a stationary armature core (4) which is inserted into the outwardly lying end of the armature tube (2), a restoring element (22) which is active between the movable armature (3) and the stationary armature core (4), a closure element (18) which is carried by the movable armature (3) and which cooperates with a passage opening (17) for opening and closing the valve arrangement as well as comprising a magnetic coil for actuating the valve arrangement, with a ring space (19) being formed between the armature tube (2) and the movable armature (3), the opening cross-section of which is dimensioned in such a manner that the space (20) which is formed between the movable armature (3) a
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: March 19, 2002
    Assignee: Emerson Electric GmbH & Co.
    Inventor: Rainer Maurer