Patents Represented by Attorney, Agent or Law Firm Douglas R. Schnabel
  • Patent number: 7726440
    Abstract: Vehicle electrical and electronic components are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are metals or conductive non-metals or metal plated non-metals. The micron conductive fibers may be metal fiber or metal plated fiber. Further, the metal plated fiber may be formed by plating metal onto a metal fiber or by plating metal onto a non-metal fiber. Any platable fiber may be used as the core for a non-metal fiber. Superconductor metals may also be used as micron conductive fibers and/or as metal plating onto fibers in the present invention.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: June 1, 2010
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7708920
    Abstract: A method to form moldable capsules of a conductively doped resin-based material is realized. The method comprises compressing a bundle of micron conductive fiber strands by passing the bundle through a compressing ring. A resin-based material is extruded/pultruded onto the compressed bundle. The resin-based material and the bundle are sectioned into moldable capsules. The micron conductive fiber comprises between about 20% and about 50% of the total weight of each moldable capsule.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 4, 2010
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7658663
    Abstract: Toys and toy components are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are metals or conductive non-metals or metal plated non-metals. The micron conductive fibers may be metal fiber or metal plated fiber. Further, the metal plated fiber may be formed by plating metal onto a metal fiber or by plating metal onto a non-metal fiber. Any platable fiber may be used as the core for a non-metal fiber. Superconductor metals may also be used as micron conductive fibers and/or as metal plating onto fibers in the present invention.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: February 9, 2010
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7644488
    Abstract: Electrical interfaces formed into a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: January 12, 2010
    Assignee: Integral Technologies
    Inventor: Thomas Aisenbrey
  • Patent number: 7644495
    Abstract: Electrical interfaces formed into a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: January 12, 2010
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7372422
    Abstract: Electronic probe devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: May 13, 2008
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7317420
    Abstract: Omni-directional antenna devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: January 8, 2008
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7316838
    Abstract: Conductive carpeting is formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: January 8, 2008
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7273135
    Abstract: Magnetic brake components are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: September 25, 2007
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7268479
    Abstract: Lighting devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 11, 2007
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7164388
    Abstract: Inductor-capacitor (LC) RF resonator circuits are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: January 16, 2007
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7084826
    Abstract: Inductors and inductive devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: August 1, 2006
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7079086
    Abstract: Electromagnetic absorbing devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: July 18, 2006
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7027304
    Abstract: Heat sinks, heat pipes, and other thermal management devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: April 11, 2006
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 7017822
    Abstract: RFID antennas are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 28, 2006
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 6819589
    Abstract: A new method to detect and to correct a weakly programmed cell in a nonvolatile memory device is achieved. The method comprises providing a plurality of nonvolatile memory cells. A means to read a selected cell compares the performance of the selected cell with the performance of a reference cell. A read state of the selected cell is high if the selected cell exceeds the reference cell. The read state of the selected cell is low if the selected cell exceeds the reference cell. A first read state is obtained by reading the selected cell with the reference cell biased to a first value. A second read state is obtained by reading the selected cell with the reference cell biased to a second value that is greater than the first value. The selected cell is flagged as weakly programmed, high if the first and second read states do not match. A third read state is obtained by reading the selected cell with the reference cell biased to a third value that is less than the first value.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: November 16, 2004
    Assignee: Dialog Semiconductor GmbH
    Inventor: Thomas Aakjer
  • Patent number: 6815324
    Abstract: In accordance with the objectives of the invention a new method is provided for the creation of metal bumps over surfaces of I/O pads. Contact pads are provided over the surface of a layer of dielectric. The aluminum of the I/O pads, which have been used as I/O pads during wafer level semiconductor device testing, is completely or partially removed over a surface area that is smaller than the surface area of the contact pad using methods of metal dry etching or wet etching. The contact pad can be accessed either by interconnect metal created in a plane of the contact pad or by via that are provided through the layer of dielectric over which the contact pad has been deposited. The process can be further extended by the deposition, patterning and etching of a layer of polyimide over the layer of passivation that serves to protect the contact pad.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: November 9, 2004
    Assignee: MEGIC Corporation
    Inventors: Ching-Cheng Huang, Chuen-Jye Lin, Ming-Ta Lei, Mou-Shiung Lin
  • Patent number: 6801445
    Abstract: A multiple level logic memory device is achieved. The device comprises, first, a plurality of memory cells capable of storing an analog voltage. Second, there is included a means of converting an external data word value comprising one value of a set of at least three possible values into a writing analog voltage corresponding to the external data word value. Third, a means of decoding an external address value in response to a write command such that the writing analog voltage is electrically coupled to the memory cell is included. Fourth, there is included a means of converting the memory cell analog voltage into an external data word value comprising one value of the set of at least three possible values corresponding to the memory cell analog voltage. Finally, a means of encoding the external address value in response to a read command such that the memory cell analog voltage is electrically coupled to the means of converting the memory cell analog voltage is used.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: October 5, 2004
    Assignee: Dialog Semiconductor GmbH
    Inventor: Horst Kn{overscore (o)}dgen
  • Patent number: 6791382
    Abstract: A method to reduce clock noise in a multiple clock circuit is achieved. The method comprises, first, providing a periodic signal. Next, a first clock signal is provided having a frequency that is a constant multiple of the frequency of the periodic signal. Finally, a second clock signal is derived from the periodic signal. The second clock signal has a frequency that is a non-constant multiple of the periodic signal frequency. The non-constant multiple comprises the sum of a constant value plus a time-varying value. The spectral energy at the sum and difference frequencies of the first and second clock signals is reduced by frequency distribution spreading. A circuit is achieved comprising the above method.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 14, 2004
    Assignee: Etron Technology, Inc.
    Inventors: Tah-Kang Joseph Ting, Gyh-Bin Wang, Ming-Song Huang
  • Patent number: 6784039
    Abstract: A new method to form split gate flash memory cells in the manufacture of an integrated circuit device is achieved. The method comprises providing a substrate. Pairs of floating gates are formed overlying the substrate. Common source plugs are formed overlying the substrate and filling spaces between the floating gate pairs. An oxide layer is formed overlying the substrate, the floating gates, and the common source plugs. A conductor layer is deposited overlying the oxide layer. First dielectric spacers are formed on vertical surfaces of the conductor layer. The conductor layer is etched through where not covered by the first dielectric spacers to thereby form word line gates adjacent to the floating gates. Second dielectric spacers are formed on vertical surfaces of the word line gates and the first dielectric spacers to complete the split gate flash memory cells.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: August 31, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Chia-Ta Hsieh