Patents Represented by Attorney Eugene I. Snyder
  • Patent number: 5139989
    Abstract: This invention relates to a catalytic composite which is an amorphous solid solution of phosphorus, silicon and aluminum oxides. The composite is characterized in that it contains from about 5 to about 50 weight percent Al.sub.2 O.sub.3, from about 10 to about 90 weight percent SiO.sub.2 and from about 5 to about 40 weight percent P.sub.2 O.sub.5 and has pores whose average diameters range from about 30 to about 200 Angstroms. The composite is further characterized in that it has a pore volume of about 0.35 to about 0.75 cc/g and a surface area of about 200 to about 420 m.sup.2 /g. The composite may be prepared by forming a mixture of sols of alumina and silica and a phosphorus compound, gelling the mixture to form particles and then calcining the particles to provide the amorphous solid solution.
    Type: Grant
    Filed: August 28, 1991
    Date of Patent: August 18, 1992
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Michael W. Schoonover
  • Patent number: 5135642
    Abstract: This invention relates to novel silicon enhanced aluminas (SEAL), processes to prepare them, and hydrocarbon conversion processes using the SEALs. The SEAL compositions have a bulk empirical formula of Al.sub.2-x Si.sub.x O.sub.3 F.sub.x where x varies from about 0.01 to about 0.5. This SEAL material has a three-dimensional pore structure with the pores having diameters in the range of about 20 to about 300.ANG., a crystal structure characteristic of alumina, and where the surface of the SEAL has a higher silicon concentration than the interior of the SEAL. The SEAL is prepared by contacting an alumina with a fluorosilicate salt. This SEAL can be calcined to give a calcined seal with a formula Al.sub.2-x Si.sub.x O.sub.3 F.sub.y where x is as defined above and y varies from 0.01 to x. The calcined SEAL contains both strong and weak acid sites. These SEAL compositions are particularly useful in hydrocracking, cracking and alkylation processes.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: August 4, 1992
    Assignee: UOP
    Inventor: Susan L. Lambert
  • Patent number: 5128025
    Abstract: This invention deals with a hydrocarbon conversion process using a crystalline oxysulfide composition. The crystalline oxysulfide composition has a three-dimensional microporous framework structure of at least MO.sub.2, MS.sub.2, and MOS tetrahedral units, having an intracrystalline pore system and an empirical formula expressed in molar ratios:(M.sub.s Al.sub.t P.sub.u Si.sub.v)S.sub.w O.sub.2-wwhere M is at least one metal selected from the group consisting of metals which: 1) can be incorporated into the framework structure of a microporous molecular sieve and 2) form hydrolytically stable sulfides; s, t, u, v and w are the mole fractions of M, Al, P, Si and S respectively. The values of s, t, u and v are chosen such that when t is greater than zero u is greater than zero, s+t+u+v=1 and when s=1, M is only a combination of gallium and germanium.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: July 7, 1992
    Assignee: UOP
    Inventors: Robert L. Bedard, Edith M. Flanigen, Stephen T. Wilson
  • Patent number: 5126308
    Abstract: This invention relates to an improved process for converting methanol to light olefins and to a catalyst for carrying out the process. The catalyst comprises a metal aluminophosphate molecular sieve having the empirical formula (EL.sub.x Al.sub.y P.sub.z)O.sub.2 where EL is a metal and x, y and z are mole fractions of EL, Al and P respectively. Preferred metals are silicon, magnesium and cobalt, with silicon especially preferred. The molecular sieve catalyst is composed of particles at least 50% of which have a particle size less than 1.0 .mu.m and no more than 10% of the particles have a particle size greater than 2.0 .mu.m. It is also preferred that the metal content (x) be from about 0.005 and 0.05 mole fraction.
    Type: Grant
    Filed: November 13, 1991
    Date of Patent: June 30, 1992
    Assignee: UOP
    Inventors: Paul T. Barger, Stephen T. Wilson, Jennifer S. Holmgren
  • Patent number: 5126489
    Abstract: Acylatable aromatic hydrocarbons may be acylated with a broad variety of carboxylic acid anhydrides in the presence of solid acid catalysts which replace conventional Friedel-Crafts catalysts to afford aromatic ketones in good yield and with high selectivity. Both aromatic and aliphatic carboxylic acid anhydrides may be used as the acylating agent, and solid acid catalysts such as the sulfated oxides of zirconia, pillared clays, and rare earth-exchanged pillared clays are found to be quite effective in the practice of this invention. The process may be practiced in a continuous mode, especially where excess aromatic compound is used as a reactant and is recycled from the product effluent to the reaction zone containing a bed of catalyst.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: June 30, 1992
    Assignee: UOP
    Inventor: Paul R. Kurek
  • Patent number: 5126120
    Abstract: This invention relates to zinc phosphate molecular sieves. These molecular sieves have a three-dimenisonal microporous framework structure of ZnO.sub.2 and PO.sub.2 tetrahedral units, an intracrystalline pore system and an empirical chemical composition on an anhydrous basis expressed as ratio of the oxides by the formula: rM.sub.2 O:sZnO:P.sub.2 O.sub.5, where M is at least one alkali metal, r ranges from about 0.9 to about 1.5 and s ranges from about 1.8 to about 3.0. These molecular sieves may be prepared by hydrothermal crystallization of a reaction mixture prepared by combining a reactive source of phosphorus, zinc, at least one alkali metal and water. This invention also relates to processes using these molecular sieves.
    Type: Grant
    Filed: January 23, 1991
    Date of Patent: June 30, 1992
    Assignee: UOP
    Inventor: Robert L. Bedard
  • Patent number: 5124492
    Abstract: This invention relates to a process for removing peroxide impurities contained in a tertiary butyl alcohol feedstock. The process involves contacting the feedstock with an iron (II) compound such as iron (II) chloride, under an inert atmosphere at elevated pressures and temperatures for a time sufficient to reduce the peroxides to alcohols and oxidize the iron (II) to iron (III). The iron (II) compound may be added in a homogeneous phase or it may be deposited on a support. When the iron (II) is added as a homogeneous phase, it is separated from the product by contacting the mixture with a cation exchange column. Finally, when a supported iron (II) compound is used, the process may be run in a batch or continuous mode.
    Type: Grant
    Filed: February 12, 1991
    Date of Patent: June 23, 1992
    Assignee: UOP
    Inventors: Chwu-Ching Jan, Thomas P. Malloy
  • Patent number: 5122357
    Abstract: This invention deals with a crystalline oxysulfide composition, a process for preparing the composition, a catalyst using the composition and processes using the composition. The crystalline oxysulfide composition has a three-dimensional microporous framework structure of at least MO.sub.2, MS.sub.2, and MOS tetrahedral units, having an intracrystalline pore system and an empirical formula expressed in molar ratios:(M.sub.s Al.sub.t P.sub.u Si.sub.v)S.sub.w O.sub.2-wwhere M is at least one metal selected from the group consisting of metals which: 1) can be incorporated into the framework structure of a microporous molecular sieve and 2) form hydrolytically stable sulfides; s, t, u, v and w are the mole fractions of M, Al, P, Si and S respectively. The oxysulfide composition is prepared by contacting a molecular sieve having an empirical formula: (M.sub.s Al.sub.t P.sub.u Si.sub.v)O.sub.
    Type: Grant
    Filed: March 18, 1991
    Date of Patent: June 16, 1992
    Assignee: UOP
    Inventors: Robert L. Bedard, Edith M. Flanigen, Stephen T. Wilson
  • Patent number: 5120453
    Abstract: The oxidation of cyanide using oxygen as the oxidizing agent can be effected under mild reaction conditions when certain metal chelates are used as catalysts. Especially effective chelates are metal phthalocyanines, particularly where the metal is vanadium or a member of the iron group metals. The oxidation can be effected homogeneously using water soluble metal chelates, or can be performed heterogeneously, especially in a continuous fashion using a packed bed reactor, by using suitable water-insoluble metal chelates, especially when supported on appropriate carriers.
    Type: Grant
    Filed: December 24, 1990
    Date of Patent: June 9, 1992
    Assignee: UOP
    Inventors: Robert R. Frame, Tom N. Kalnes, Mark D. Moser
  • Patent number: 5114895
    Abstract: This invention relates to a composition, a method of preparing the composition and a catalyst using the composition. The composition consists essentially of a layered clay homogeneously dispersed in an inorganic oxide matrix. The clay is dispersed in such a way that the clay layers are completely surrounded by the inorganic oxide matrix. The inorganic oxide is selected from the group consisting of alumina, titania, silica, zirconia, P.sub.2 O.sub.5 and mixtures thereof. The clay can be a natural clay such as montmorillonite, a metal exchanged clay (Fe.sup.+3 exchanged) or a pillared clay such as aluminum chlorohydrate (ACH) pillared clay. The composition can be used as a catalyst for alkylation or hydrocracking or metals can be dispersed on it to provide a catalyst which is also useful for hydrocracking or alkylation.
    Type: Grant
    Filed: December 20, 1990
    Date of Patent: May 19, 1992
    Assignee: UOP
    Inventors: Jennifer S. Holmgren, Stanley A. Gembicki, Michael W. Schoonover, Joseph A. Kocal
  • Patent number: 5109128
    Abstract: A process is presented for the continuous oxidation of alditols to aldoses accompanied by under 20 weight percent of aldonic and/or alduronic acids relative to the aldoses that are formed. The use of zerovalent platinum on a support such as theta-alumina and at superatmospheric oxygen partial pressures up to about 1,000 pounds per square inch is partially successful in affording good conversion of alditols with relatively low aldonic and/or alduronic acid formation.
    Type: Grant
    Filed: January 18, 1991
    Date of Patent: April 28, 1992
    Assignee: UOP
    Inventors: Elaine F. Schumacher, Blaise J. Arena
  • Patent number: 5107118
    Abstract: It has been determined that the symmetric stretching frequency of water at concentrations of 10 ppm and more in liquid hydrocarbons is effectively independent of the nature of the hydrocarbon. On this basis one can rapidly, accurately, and precisely measure such water concentrations by comparing the transmittance of a narrow band of infrared frequencies within the symmetric stretching band of a wet sample with the transmittance at a frequency in the 3770-4000 cm.sup.-1 range, performing a second comparison with a dried sample, and forming the ratio of the two comparative measurements as a measure of dissolved water content.
    Type: Grant
    Filed: October 1, 1990
    Date of Patent: April 21, 1992
    Assignee: UOP
    Inventors: Richard C. Murray, Jr., Christopher A. Mendyk, Alan D. Wilks
  • Patent number: 5102972
    Abstract: A class of di-ortho-substituted bismaleimides undergo uncatalyzed Michael addition with polyhydric phenols to afford chain-extended bismaleimides having a significantly wider processing window than the non-extended parent. The fully cured resins show improved fracture toughness, generally have comparable or superior dielectric constant and dielectric loss, and show no degradation in other properties such as resistance to moisture, to methylene chloride, and coefficient of thermal expansion.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: April 7, 1992
    Assignee: Allied-Signal Inc.
    Inventors: Raymond J. Swedo, Joseph J. Zupancic
  • Patent number: 5102745
    Abstract: A family of composites are characterized as a network of a first fiber and at least a second fiber, where at least the first fibers have a multiplicity of bonded junctions at their point of crossing. The largest class has metals as one or both of the fibers, although the second fiber can be of materials such as carbon, ceramics, and high surface area materials. The composites can be simply prepared and manifest enormous variation in such properties as void volume, pore size, and electrical properties generally.
    Type: Grant
    Filed: November 13, 1989
    Date of Patent: April 7, 1992
    Assignee: Auburn University
    Inventors: Bruce J. Tatarchuk, Millard F. Rose, Aravamuthan Krishnagopalan
  • Patent number: 5098793
    Abstract: A large class of crosslinked cyclodextrin resins soluble in water to an extent under about 200 ppm but soluble in an organic solvent to an extent of at least 0.1 weight percent have good film-forming properties with a wide variety of solid phase substrates. The films exhibit excellent adhesive properties toward virtually all solid surfaces which consequently can be readily coated with a thin film having a multiplicity of cyclodextrin moieties available at the surface for seperation and/or purification. Such coated substrates can be prepared in a variety of sizes, shapes, and cyclodextrin loading quite conveniently and relatively inexpensively.
    Type: Grant
    Filed: March 23, 1990
    Date of Patent: March 24, 1992
    Assignee: UOP
    Inventors: Ronald P. Rohrbach, Haya Zemel, Mark B. Koch
  • Patent number: 5098687
    Abstract: This invention relates to molecular sieve compositions and processes for using the molecular sieves. The molecular sieves have a three-dimensional microporous crystalline framework structure of tetrahedral oxide units of AlO.sub.2, SiO.sub.2, TiO.sub.2 and/or FeO.sub.2. These molecular sieves can be prepared by contacting a starting zeolite with a solution or slurry of a fluoro salt of titanium and/or iron under effective process conditions to extract aluminum from the zeolite framework and substitute titanium and/or iron. The molecular sieves can be used as catalysts in hydrocarbon conversion processes and other processes.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: March 24, 1992
    Assignee: UOP
    Inventors: Gary W. Skeels, Richard Ramos
  • Patent number: 5096663
    Abstract: Composites of a matrix of metal fibers and carbon fibers interlocked in and interwoven among a network of fused metal fibers are inherently capable of displaying a broad range of values of a particular physical property. Where the composite is made by sintering a preform of the fiber network dispersed in a matrix of an organic binder, the value of the physical property of the resulting composite is a function of several independent variabiles which can be controlled during composite fabrication. With particular regard to the capacitance of a stainless steel-carbon fiber electrode, there is described a method of optimizing capacitance during electrode fabrication.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: March 17, 1992
    Assignee: Auburn University
    Inventor: Bruce J. Tatarchuk
  • Patent number: 5093296
    Abstract: This invention relates to a liquid-liquid process for treating a sour hydrocarbon fraction. The process comprises contacting the hydrocarbon fraction in the presence of an oxidizing agent with an aqueous solution containing ammonium hydroxide, a metal chelate and an onium compound selected from the group consisting of quaternary ammonium, phosphonium, arsonium, stibonium, oxonium and sulfonium compounds. A preferred onium compound is a quaternary ammonium compound with an especially preferred compound being a quaternary ammonium halide. This invention also relates to a catalyst comprising an aqueous solution containing ammonium hydroxide, a metal chelate and an onium compound, for oxidizing mercaptans contained in a sour hydrocarbon fraction. The aqueous solution which is the catalyst can also be used to improve the activity of a fixed bed mercaptan oxidation catalyst.
    Type: Grant
    Filed: August 27, 1990
    Date of Patent: March 3, 1992
    Assignee: UOP
    Inventors: Robert R. Frame, Jeffery C. Bricker, Laurence O. Stine, Thomas A. Verachtert
  • Patent number: 5088204
    Abstract: A level sensing unit, designed to be incorporated in a carpenter's level, is relatively insensitive to the expansion and contraction of the buoyant fluid, independent of the specific gravity of the fluid, and virtually free of oscillations accompanying a change in liquid orientation. The device can be constructed inexpensively of commonly available materials. The device has a float with an electrically conducting plate bisecting the float between its ends and is pivotally mounted on pins protruding from walls of a sealed housing. Adjacent to the opposing surfaces of the plate are two electrically conducting strips. At level neither strip contacts the nearest surface of the plate, but when the unit is not at level one or the other strip makes physical and electrical contact.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: February 18, 1992
    Inventor: Kenneth E. Wolf
  • Patent number: 5082569
    Abstract: The metal concentration in a liquid hydrocarbon stream can be reduced to no more than 0.1 parts per billion by contacting the stream sequentially with a cation exchange resin and a silver-impregnated zeolitic molecular sieve, preferably in that order. The method is particularly useful for removal of mercury and antimony from liquified petroleum gas.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: January 21, 1992
    Assignee: UOP
    Inventors: Edwin H. Homeier, Peter O. Hennes, Padma V. Tota