Patents Represented by Attorney Eugene I. Snyder
  • Patent number: 5273663
    Abstract: The oxidation of cyanide under acid conditions using oxygen as the oxidizing agent can be effected under mild reaction conditions when certain metal chelates are used as catalysts. Especially effective chelates are metal phthalocyanines, particularly where the metal is vanadium or a member of the iron group metals. The oxidation can be effected homogeneously using water soluble metal chelates, or can be performed heterogeneously, especially in a continuous fashion using a packed bed reactor, by using suitable water-insoluble metal chelates, especially when supported on appropriate carriers.
    Type: Grant
    Filed: February 11, 1993
    Date of Patent: December 28, 1993
    Assignee: UOP
    Inventors: Paul R. Kurek, Robert R. Frame, Tom N. Kalnes, Mark D. Moser
  • Patent number: 5271761
    Abstract: This invention relates to molecular sieve compositions and processes for using the molecular sieves. The molecular sieves have a three-dimensional microporous crystalline framework structure of tetrahedral oxide units of AlO.sub.2, SiO.sub.2, TiO.sub.2 and/or FeO.sub.2. These molecular sieves can be prepared by contacting a starting zeolite with a solution or slurry of a fluoro salt of titanium and/or iron under effective process conditions to extract aluminum from the zeolite framework and substitute titanium and/or iron. The molecular sieves can be used as catalysts in hydrocarbon conversion processes and other processes.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: December 21, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Richard Ramos
  • Patent number: 5259948
    Abstract: This invention relates to a hydrocarbon conversion processes, e.g., hydrocracking, cracking, alkylation, etc., using a silicon enhanced amorphous silica-alumina (SEASAL) composition. The composition is characterized in that from about 3 to about 22 mole percent of the aluminum atoms in a host amorphous silica-alumina have been replaced by silicon atoms. Additionally, the SEASAL contains from about 0.5 to about 10 weight percent fluoride and has a cracking activity of at least 30%. The SEASAL is prepared by reacting a host amorphous silica-alumina with a fluorosilicate salt, thereby removing aluminum atoms and inserting silicon atoms.
    Type: Grant
    Filed: September 3, 1992
    Date of Patent: November 9, 1993
    Assignee: UOP
    Inventors: Susan L. Lambert, Michael W. Schoonover
  • Patent number: 5258558
    Abstract: Solid solutions of magnesium oxide-aluminum oxide related to hydrotalcite and what previously has been referred to as synthetic hydrotalcites, have been prepared with a surface area in excess of 250 m.sup.2 /g, especially at low Mg/Al atom ratios. Such high surface area materials are found to be quite effective in the aldol condensation of aldehydes, and in particular in the conversion of n-butyraldehyde to 2-ethyl-2-hexenal in high yield and with good selectivity in a liquid phase reaction at temperatures under about 200.degree. C.
    Type: Grant
    Filed: May 18, 1992
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5258563
    Abstract: A process is disclosed for the conversion of light aliphatic hydrocarbons such as propane into aromatic hydrocarbons and especially high purity benzene. The feed hydrocarbon is converted to aromatic hydrocarbons in a dehydrocyclodimerization zone. The product stream from the dehydrocyclodimerization zone which contains benzene, toluene, xylenes and C.sub.6 -C.sub.10 non-aromatics are separated into an overhead stream which contains the non-aromatic hydrocarbons and a small fraction of the benzene and a bottoms stream which contains the remainder of the benzene and other aromatic components. The overhead stream is then flowed to a conversion zone where the C.sub.6 -C.sub.7 non-aromatic hydrocarbons are cracked and the benzene is combined with the bottoms stream and further separated to give a high purity benzene product stream and a toluene, xylenes and C.sub.9 + product stream. The toluene, xylenes and C.sub.9 + product stream may further be separated into a toluene and xylenes product and a C.sub.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Christopher D. Gosling, David A. Hamm
  • Patent number: 5258564
    Abstract: A process for converting C.sub.2 to C.sub.6 aliphatic hydrocarbons to aromatics is described. The process uses a catalyst which contains a zeolite, an aluminum phosphate binder and a gallium component. Examples of zeolites which can be used are the ZSM family of zeolites, with ZSM-5 being a specific example. The catalyst is characterized in that it is tolerant to exposure to hydrogen at temperatures of about 500.degree. to about 700.degree. C. The catalyst's tolerance to hydrogen exposure is the result of treating the catalyst with an aqueous solution of a weakly acidic ammonium salt or a dilute acid solution at a temperature of about 50.degree. to about 100.degree. C. for a time of about 1 to about 48 hours, followed by calcination.
    Type: Grant
    Filed: August 21, 1992
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Joseph A. Kocal, Tamotsu Imai, Paul J. Kuchar, Christopher D. Gosling
  • Patent number: 5254743
    Abstract: Solid solutions of a class of divalent metal oxides and a class of trivalent metal oxides resulting from calcination of layered double hydroxides related to hydrotalcite have been prepared with a surface area in excess of 150 m.sup.2 /g. Such high surface area materials are found to be quite effective in the aldol condensation of aldehydes and ketones, and in particular in the conversion of n-butyraldehyde to 2-ethyl-2-hexenal in high yield and with good selectivity in a liquid phase reaction at temperatures under about 200.degree. C. Variants can be devised where the aldol condensation product, an .alpha.,.beta.-unsaturated aldehyde or ketone, is concurrently reduced to the saturated alcohol under process conditions.
    Type: Grant
    Filed: December 9, 1992
    Date of Patent: October 19, 1993
    Assignee: UOP
    Inventors: Jennifer S. Holmgren, Blaise J. Arena
  • Patent number: 5254138
    Abstract: Conductive fuel detergent compositions which posses not only the desirable characteristics of minimizing unwanted deposits on internal engine surface such as intake systems or port fuel injectors and exhibiting anticorrosion characteristics but also have conductive properties comprise quaternary succinimides which are characterized by having an oligomeric alkyl moiety on the succinimide ring. The additive may be prepared by condensing a (polyalkyl)succinic anhydride with a polyamino hydroxyalkyl quaternary ammonium salt, where the latter is formed by the reaction of a .OMEGA.-haloepoxide with a tertiary amine followed by reaction of the resulting product with a polyamine.
    Type: Grant
    Filed: May 4, 1992
    Date of Patent: October 19, 1993
    Assignee: UOP
    Inventor: Paul R. Kurek
  • Patent number: 5245094
    Abstract: It has been found that the aromatic byproducts normally formed in the dehydrogenation of normal paraffins to linear monoolefins are detrimental in the usual processes of aromatic alkylation using the dehydrogenation product mixture as an alkylation feedstock. In particular, when solids are used as the alkylation catalysts with recycle of the unreacted feedstock to the dehydrogenation reactor the aromatic byproducts increase to a level where they exert a significant decrease in the stability of the alkylation catalyst. When the aromatic byproducts are removed in whole or in part alkylation may be performed at a substantially lower temperature, which affords alkylated aromatics whose alkyl portion has greater linearity than that observed at a higher alkylation temperature.
    Type: Grant
    Filed: July 27, 1992
    Date of Patent: September 14, 1993
    Assignee: UOP
    Inventor: Joseph A. Kocal
  • Patent number: 5238581
    Abstract: The oxidation of complexed cyanide using oxygen as the oxidizing agent when certain metal chelates are used as catalysts may be enhanced by irradiating the complexed cyanide with ultraviolet light prior to or concurrent with the oxidation. Especially effective chelates are metal phthalocyanines, particularly where the metal is vanadium or a member of the iron group metals. The oxidation can be effected homogeneously using water soluble metal chelates, or can be performed heterogeneously, especially in a continuous fashion using a packed bed reactor, by using suitable water-insoluble metal chelates, especially when supported on appropriate carriers.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: August 24, 1993
    Assignee: UOP
    Inventors: Robert R. Frame, Tom N. Kalnes, Mark D. Moser
  • Patent number: 5233097
    Abstract: Certain crystalline titanoaluminosilicate molecular sieve compositions having titanium, aluminum, and silicon present as framework tetrahedral oxide units are particularly effective in hydroxylating the aromatic nucleus of aromatic compounds using hydrogen peroxide, even where the hydrogen peroxide is used at concentrations of 10 weight percent or less. The variant where the exchangeable hydrogens of the titanoaluminosilicate are replaced by an alkali or alkaline earth metal cation is particularly favored because of the concomitant increase in selectivity. Excellent utilization of hydrogen peroxide often is observed, even when the hydroxylation is effected at temperatures under about 60.degree. C.
    Type: Grant
    Filed: October 15, 1992
    Date of Patent: August 3, 1993
    Assignee: UOP
    Inventors: Laszlo T. Nemeth, Eric M. Hyatt, Thomas P. Malloy
  • Patent number: 5232887
    Abstract: A catalyst has been developed. The catalyst is a metal chelate dispersed on a basic support which is either a solid solution of metal oxides or a layered double hydroxide (LDH). The process involves contacting a sour hydrocarbon fraction which contains mercaptans with the catalyst in the presence of an oxidizing agent and a polar compound. Examples of these polar compounds are water and alcohols, with methanol being especially preferred. The process is unique in that the solid solution or LDH are solid bases which eliminates the need for a liquid base. Optionally, an onium compound may be used as a catalyst promoter.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: August 3, 1993
    Assignee: UOP
    Inventors: Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5230789
    Abstract: This invention relates to hydrocarbon conversion processes using a catalytic composite which is an amorphous solid solution of phosphorus, silicon and aluminum oxides. The composite is characterized in that it contains from about 5 to about 50 weight percent Al.sub.2 O.sub.3, from about 10 to about 90 weight percent SiO.sub.2 and from about 5 to about 40 weight percent P.sub.2 O.sub.5 and has pores whose average diameters range from about 30 to about 200 Angstroms. The composite is further characterized in that it has a pore volume of about 0.35 to about 0.75 cc/g and a surface area of about 200 to about 420 m.sup.2 /g. The composite may be prepared by forming a mixture of sols of alumina and silica and a phosphorus compound, gelling the mixture to form particles and then calcining the particles to provide the amorphous solid solution. The amorphous composite may be used either as is or with additional catalytic metals (selected from the metals of Group VIB and VIII of the Periodic Table) dispersed thereon.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: July 27, 1993
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Michael W. Schoonover
  • Patent number: 5225597
    Abstract: A continuous method of preparing N-monoalkyl alkylenediamines, uncontaminated by the N,N'-dialkyl alkylenediamine, is based on the observation that the disubstituted material selectively precipitates from aqueous media. A scheme is presented where an aqueous alkylenediamine is reacted with a suitable carbonyl component and hydrogen over a supported platinum catalyst. Where the alkylenediamine forms an azeotrope with water it can be conveniently recycled to the reactor.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: July 6, 1993
    Assignee: UOP
    Inventor: Paul R. Kurek
  • Patent number: 5223551
    Abstract: Rigid urea-modified polyisocyanurate foams with improved dimensional stability and flame retardancy have densities of 1-12 p.c.f., a limiting oxygen index greater than 22 and dimensional changes at 100% R.H. and 70.degree. C. of less than 2% in any linear dimension and a method of making same. The method comprises reacting an organic polyisocyanate, a blowing agent and an N,N'-dialkyl aromatic diamine in the presence of a trimerization catalyst and, if water is used as the blowing agent, a blowing catalyst, wherein the N,N'-dialkyl aromatic diamine and an amine produced by water, if used, constitute the sole sources of active hydrogen.
    Type: Grant
    Filed: December 26, 1991
    Date of Patent: June 29, 1993
    Assignee: UOP
    Inventors: Mark J. Gattuso, David W. House, Ray V. Scott, Jr.
  • Patent number: 5214211
    Abstract: Rare earth pillared clays, and especially cerium and lanthanum aluminum chlorohydrite pillared clays, are quite effective catalysts in the alkylation of diaryl amines at temperatures in the range of 100.degree.-225.degree. C. The catalysts effect alkylation using olefins as the alkylating agent with high conversion and with minimal cracking of either the olefin or the alkylated product. Catalysts may be regenerated by heating in air at temperatures of at least about 550.degree.-600.degree. C. Water in small amounts also modifies the reaction to further reduce cracking although it also reduces the activity of the catalyst.
    Type: Grant
    Filed: December 12, 1991
    Date of Patent: May 25, 1993
    Assignee: UOP
    Inventors: Paul R. Kurek, Jennifer S. Holmgren
  • Patent number: 5212127
    Abstract: This invention relates to a process for reactivating a dehydrocyclodimerization catalyst. Dehydrocyclodimerization catalysts which contain an aluminum phosphate binder can be deactivated when they are exposed to hydrogen at temperatures above 500.degree. C. The instant process restores substantially all of the catalyst's lost activity. The process involves treating the catalyst with an aqueous solution of a weakly acidic ammonium salt or a dilute acid solution at a temperature of about 50.degree. to about 100.degree. C. for a time of about 1 to about 48 hours. An ammonium nitrate solution is preferred. Next the catalyst is calcined at a temperature of about 500.degree. to about 700.degree. C. for a time of about 1 to about 15 hours to provide a reactivated catalyst. The catalyst can be reactivated several times using this process.
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: May 18, 1993
    Assignee: UOP
    Inventors: Joseph A. Kocal, Christopher D. Gosling, Paul J. Kuchar, Tamotsu Imai
  • Patent number: 5204306
    Abstract: This invention relates to a catalyst which is useful in oxidizing mercaptans present in a sour hydrocarbon fraction. The catalyst consists of an aqueous solution containing ammonium hydroxide, a metal chelate and an onium compound selected from the group consisting of quaternary ammonium, phosphonium, arsonium, stibonium, oxonium and sulfonium compounds. The counter ion of the onium compound is halide, nitrate, sulfate, phosphate, acetate, citrate and tartrate. The catalyst is used in a liquid-liquid process to sweeten a sour hydrocarbon fraction.
    Type: Grant
    Filed: November 29, 1991
    Date of Patent: April 20, 1993
    Assignee: UOP
    Inventors: Robert R. Frame, Jeffery C. Bricker, Laurence O. Stine, Thomas A. Verachtert
  • Patent number: 5200162
    Abstract: The exothermicity attending decomposition of N.sub.2 O to nitrogen and oxygen can lead to a multiplicity of process difficulties associated with high process temperatures. An improved process is one where a portion of the exit gases, depleted in N.sub.2 O, is first cooled and then recycle to the N.sub.2 O-decomposition zone. The process is amenable to process control to afford a very stable process largely independent on the particular catalyst used for N.sub.2 O decomposition. Where the N.sub.2 O-containing waste gas stream also contains NO.sub.x, if it often highly desirable to pretreat the stream to remove NO.sub.x prior to the N.sub.2 O-decomposition zone.
    Type: Grant
    Filed: April 1, 1992
    Date of Patent: April 6, 1993
    Assignee: UOP
    Inventors: Brian W. Riley, John R. Richmond
  • Patent number: 5196574
    Abstract: A fluorided silca-alumina catalyst, particularly one with a silica:alumina ratio in the range of 1:1-9:1 containing from 1 to 6 weight percent fluoride, is particularly effective in the liquid phase alkylation of benzene to produce linear alkyl benzenes at temperatures no greater than 140.degree. C. Conversions in excess of 98% with selectivity exceeding 85% and linearity exceeding 90% may be achieved readily.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: March 23, 1993
    Assignee: UOP
    Inventor: Joseph A. Kocal