Patents Represented by Attorney Eugene I. Snyder
  • Patent number: 5473105
    Abstract: A process for concurrently producing diisopropyl ether and isopropyl ethyl ether from water, ethanol from an independent source, and propylene, has been developed. The product mixture may be used as a high octane number booster due mainly to the presence of the diisopropyl ether and to a lesser extent, the isopropyl ethyl ether. Furthermore, the product mixture, upon blending with gasoline, incorporates a renewable resource into the gasoline since the isopropyl ethyl ether is produced from ethanol. Optionally, the product mixture may be passed through an acid removal zone to remove acid, if present, before being recycled or further processed. A portion of the product mixture is recycled to the reaction zone to increase the conversion of reactants to products.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: December 5, 1995
    Assignee: UOP
    Inventors: Terry L. Marker, Robert J. Schmidt, Richard E. Marinangeli, Allyn T. Gilbert
  • Patent number: 5470482
    Abstract: A process of continuously controlling at least one characteristic of a simulated moving bed para-xylene separation process has been developed. The characteristics controlled may be the purity or the recovery of the para-xylene. The process involves measuring the concentrations of the para-xylene, meta-xylene, ortho-xylene, and ethylbenzene in the pumparound or pusharound stream, calculating the value of the characteristic, and making required adjustments to operating variables according to an algorithm which relates changes in the value of the characteristic to the changes in the concentrations of the components resulting from changes in the operating variables. The process is unique in that the necessary quantity of data to control the separation is rapidly generated, thereby providing increased efficiency, precision, and accuracy.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: November 28, 1995
    Assignee: UOP
    Inventor: Randall E. Holt
  • Patent number: 5470890
    Abstract: Flexible foam resistant to both photochemical and oxidative degradation result from the use of bis(N-alkylaminocyclohexyl)methanes as curing agents for polyisocyanates or polyisocyanate prepolymers. The chain extenders may be used alone or in combination with other polyamines and with polyols. Where the polyisocyanate or polyisocyanate prepolymer is also aliphatic there is outstanding resistance to yellowing.
    Type: Grant
    Filed: June 17, 1994
    Date of Patent: November 28, 1995
    Assignee: UOP
    Inventors: David W. House, Ray V. Scott, Jr., Mark J. Gattuso
  • Patent number: 5466835
    Abstract: The oxidation of olefinic compounds generally using hydroperoxides, especially aqueous solutions of hydrogen peroxide, can be effected in high yield and with good selectivity in the presence of a catalyst which is a mixture of small particles of titania and a titanosilicalite. Small particle size is essential in affording a catalyst with good activity and selectivity, with particle sizes no more than about 0.3 microns being the preferred mode of operation. Dilute aqueous hydrogen peroxide solutions may be used with good results. The resulting epoxidation, even when carried out at modest temperatures and with dilute aqueous hydrogen peroxide solutions, afford superior results in epoxidation relative to TS-1.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: November 14, 1995
    Assignee: UOP
    Inventors: Laszlo T. Nemeth, Thomas P. Malloy, Richard R. Jones
  • Patent number: 5458787
    Abstract: Carbonaceous pyropolymers possessing recurring units containing at least carbon and hydrogen atoms on their surface are effective in removing from solution metal cations having a standard reduction potential to their zerovalent state of greater than -0.2 volts. Their mode of action appears to be via reduction of the metal to the zerovalent state which then is deposited on the pyropolymer surface.
    Type: Grant
    Filed: October 27, 1994
    Date of Patent: October 17, 1995
    Assignee: UOP
    Inventors: Richard R. Rosin, William C. Schwerin
  • Patent number: 5457260
    Abstract: A process of continuously controlling at least one characteristic of a simulated moving adsorbent bed separation process has been developed. The characteristics controlled may be the purity or the recovery of the component of interest. The process involves measuring the concentration of the components in the pumparound or pusharound stream, calculating the value of the characteristic, and making required adjustments to operating variables according to an algorithm which relates changes in the value of the characteristic to the changes in the concentrations of the components resulting from changes in the operating variables. The process is unique in that the necessary quantity of data to control the separation is rapidly generated, thereby providing increased efficiency, precision and accuracy.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: October 10, 1995
    Assignee: UOP
    Inventor: Randall E. Holt
  • Patent number: 5449696
    Abstract: A process for the continuous production of methanol through contacting at least one feed stream containing at least carbon monoxide and hydrogen, and optionally carbon dioxide, with a simulated moving bed acting as a catalyst for methanol synthesis and an adsorbent for the methanol formed has been developed. The carbon monoxide and hydrogen are catalytically reacted to form methanol which is separated from the carbon monoxide and hydrogen by concurrent adsorption. The methanol is desorbed using a carbon dioxide or hydrogen desorbent and collected. A specific embodiment is one where the feed stream is introduced to the simulated moving bed at a temperature from about 210.degree. to about 270.degree. C. and the desorbent is introduced to the simulated moving bed at a temperature of about 150.degree. to about 250.degree. C.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: September 12, 1995
    Assignee: UOP
    Inventors: Hemant W. Dandekar, Gregory A. Funk
  • Patent number: 5449450
    Abstract: Hydrocarbon conversion processes are described which use novel microporous compositions. These compositions have a three-dimensional microporous framework structure of ZnO.sub.2, PO.sub.2 and M'O.sub.2 tetrahedral units, and an intracrystalline pore system. The M' metal is selected from the group consisting of magnesium, copper, gallium, aluminum, germanium, cobalt, chromium, iron, manganese, titanium and mixtures thereof. Examples of the hydrocarbon conversion processes include hydrocracking, hydrotreating and hydrogenation.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: September 12, 1995
    Assignee: UOP
    Inventor: Robert L. Bedard
  • Patent number: 5449853
    Abstract: A process to separate at least two classes of hydrocarbons of a solution using an alkylene-bridged polysilsesquioxane adsorbent has been developed. The classes of hydrocarbons to be separated may be saturated hydrocarbons, unsaturated aliphatic hydrocarbons and aromatic hydrocarbons. The alkylene-bridging group may contain from about 2 to about 14 carbon atoms. A specific embodiment of the invention is one where the components of a solution of aromatic, unsaturated aliphatic, and saturated hydrocarbons are separated into an aromatic hydrocarbon portion, an unsaturated aliphatic hydrocarbon portion, and a saturated hydrocarbon portion where the adsorbent is an alkylene-bridged polysilsesquioxane.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: September 12, 1995
    Assignee: UOP
    Inventors: James R. Lansbarkis, Timothy A. Brandvold
  • Patent number: 5447786
    Abstract: Robust, large area selective infrared line emitters can be made using composites of rare earth metal compound particulates dispersed and interlocked in a network of connected structure-forming fibers having an emissivity less than about 0.1 in the range 0.7-5 microns. Articles where the composite is formed of rare earth metal oxide fibers in a network of sinter-bonded quartz fibers show narrow bandwidth emissions with good thermal conversion efficiencies.
    Type: Grant
    Filed: May 25, 1994
    Date of Patent: September 5, 1995
    Assignee: Auburn University
    Inventors: Millard F. Rose, Peter L. Adair
  • Patent number: 5443863
    Abstract: Decomposition of ozone in a microwave discharge cavity leads to formation of highly energetic excited states of atomic oxygen which can efficiently oxidize materials at a temperature far less than that needed for purely thermal oxidation. This technique can be applied to formation of films of silica at the surface of silicon and silicon carbide while maintaining quite moderate surface temperatures, often under 100.degree. C. The technique can be used generally in a process to oxidize materials whose oxidation requires a standard free energy change of less than about +636 kJ/mol.
    Type: Grant
    Filed: March 16, 1994
    Date of Patent: August 22, 1995
    Assignee: Auburn University
    Inventors: William C. Neely, William F. Welch, Raymond F. Askew
  • Patent number: 5439864
    Abstract: This invention relates to a shaped composition composed of a carbonaceous pyropolymer having recurring units containing at least carbon and hydrogen atoms. The composition is characterized by a crush strength of at least 6 kg and has a bimodal pore distribution having maxima at pore diameters of about 60 to 900 .ANG. and about 120 to 160 .ANG..
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: August 8, 1995
    Assignee: UOP
    Inventors: Richard R. Rosin, Steven A. Bradley
  • Patent number: 5440034
    Abstract: Propylamines are dehydrocyclized by non-acidic molecular sieves containing a Group VIII zerovalent metal to afford azacycloheptanes with good selectivity. The molecular sieves show less than 5% activity in a standard heptene-1 isomerization test. Performing the reaction in the presence of hydrogen and/or ammonia often is beneficial.
    Type: Grant
    Filed: December 28, 1993
    Date of Patent: August 8, 1995
    Assignee: UOP
    Inventors: Leonid B. Galperin, Jeffrey C. Bricker
  • Patent number: 5437781
    Abstract: This invention relates to a hydrocarbon conversion process using a novel silicoaluminophosphate molecular sieves. These sieves are represented by the empirical formula:mR:(Si.sub.x Al.sub.y P.sub.z)O.sub.2where R represents at least one organic templating agent present in the intracrystalline pore system; m is the molar amount of R per mole of (Si.sub.x Al.sub.y P.sub.z)O.sub.2 and has a value from zero to about 0.3; x is the mole fraction of silicon and varies from about 0.01 to about 0.98, y is the mole fraction of aluminum and varies from about 0.01 to about 0.60, z is the mole fraction of phosphorus and varies from about 0.01 to about 0.52 and x+y+z=1. These sieves have the structure of SAPO-36 or SAPO-56.
    Type: Grant
    Filed: August 15, 1994
    Date of Patent: August 1, 1995
    Assignee: UOP
    Inventor: Stephen T. Wilson
  • Patent number: 5433793
    Abstract: A flow scheme is presented for the production of high purity D-allose from D-glucose. The key reaction is epimerization of D-glucose at C-3 to afford D-allose in per pass yields of at least 7%. The epimerization reaction product is then subjected to concentration, decolorization, and deionization before entering a separation zone, preferably a sorptive separation zone, from which an extract stream enriched in D-allose is obtained.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: July 18, 1995
    Assignee: UOP
    Inventors: Raymond R. Herber, Gregory F. Maher, Edward C. Arnold, Thomas W. Lorsbach
  • Patent number: 5430295
    Abstract: A process of controlling the blending of components to produce a product composition at a target value for least one characteristic has been developed. The process involves varying the proportion of the components, determining with each variation the change in the value of a characteristic, adjusting the proportion of those components to afford a new composition where the value of the characteristic is numerically closer to the target value, and repeating the steps until the target value of the characteristic is achieved. The process further includes determining blending factors to be used in existing blending equations.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: July 4, 1995
    Assignee: UOP and Arco
    Inventors: David A. Le Febre, Linda M. Lane
  • Patent number: 5413701
    Abstract: A catalytic system of physically separate and discrete solid materials and a mercaptan oxidation process for using the catalytic system have been developed. The catalytic system comprises a supported metal chelate dispersed on a non-basic solid support and a solid base. The process involves contacting a sour middle distillate hydrocarbon fraction which contains mercaptans first with the solid base and then, in the presence of an oxidizing agent and a polar compound, with the supported metal chelate. The process is unique in that both the catalyst and the base are solid materials and that the solid base is in a separate fixed bed from the supported metal chelate.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventors: Ralph D. Gillespie, Jeffery C. Bricker, Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5413704
    Abstract: A catalytic mixture of discrete solid materials and a mercaptan oxidation process for using the catalytic mixture have been developed. The catalytic mixture comprises a metal chelate dispersed on a non-basic solid support and a solid base. The process involves contacting a sour middle distillate hydrocarbon fraction which contains mercaptans with the supported metal chelate and the solid base mixture in the presence of an oxidizing agent and a polar compound. The process is unique in that both the catalyst and the base are discrete solid materials.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventors: Ralph D. Gillespie, Jeffery C. Bricker, Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5414192
    Abstract: An adsorptive process to separate the components of a solution of linear and branched hydrocarbons into a linear hydrocarbon portion and a branched hydrocarbon portion where the adsorbent is an aryl-bridged polysilsesquioxane has been developed. The hydrocarbon components to be separated may be alkanes, alkenes, or alkynes, and the aryl-bridging group of the adsorbent may be phenylene, diphenylene, terphenylene or anthrylene. A specific embodiment of the invention is one where the process is operated in the simulated moving bed mode.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventor: James R. Lansbarkis
  • Patent number: 5409597
    Abstract: Hydrocarbon conversion processes are disclosed which are catalyzed by novel pillared clay compositions. The clay contains pillars which are at least partially fluorided. These pillars are metal fluoro hydroxy cations where the metal can be Al, Zr, Si/Al, Ti or Cr. The clays which can be pillared with these pillars are the smectite clays which include hectorite and beidellite along with synthetically prepared smectite clays. These clays are prepared by pillaring the clay, followed by calcination and then treatment with a fluoride salt such as ammonium bifluoride.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: April 25, 1995
    Assignee: UOP
    Inventor: Jennifer S. Holmgren