Patents Represented by Attorney, Agent or Law Firm Graham S. Jones, II
  • Patent number: 6103592
    Abstract: FET devices are manufactured using STI on a semiconductor substrate coated with a pad from which are formed raised active silicon device areas and dummy active silicon mesas capped with pad structures on the doped silicon substrate and pad structure. A conformal blanket silicon oxide layer is deposited on the device with conformal projections above the mesas. Then a polysilicon film on the blanket silicon oxide layer is deposited with conformal projections above the mesas. The polysilicon film projections are removed in a CMP polishing step which continues until the silicon oxide layer is exposed over the pad structures. Selective RIE partial etching of the conformal silicon oxide layer over the mesas is next, followed in turn by CMP planarization of the conformal blanket silicon oxide layer which converts the silicon oxide layer into a planar silicon oxide layer, using the pad silicon nitride as an etch stop.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: August 15, 2000
    Assignees: International Business Machines Corp., Siemens Aktiengesellschaft
    Inventors: Max Gerald Levy, Bernhard Fiegl, Walter Glashauser, Frank Prein
  • Patent number: 6093606
    Abstract: A method of forming a vertical transistor memory device comprises the following process steps. Before forming the trenches, FOX regions are formed between the rows. Then form a set of trenches with sidewalls and a bottom in a semiconductor substrate with threshold implant regions the sidewalls. Form doped drain regions near the surface of the substrate and doped source regions in the base of the device below the trenches with oppositely doped channel regions therebetween. Form a tunnel oxide layer over the substrate including the trenches. Form a blanket thin floating gate layer of doped polysilicon over the tunnel oxide layer extending above the trenches. Etch the floating gate layer leaving upright floating gate strips of the floating gate layer along the sidewalls of the trenches. Form an interelectrode dielectric layer composed of ONO over the floating gate layer and over the tunnel oxide layer. Form a blanket thin control gate layer of doped polysilicon over the interelectrode dielectric layer.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: July 25, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong-Jung Lin, Shui-Hung Chen, Mong-Song Liang
  • Patent number: 6087699
    Abstract: A substrate is covered with a gate oxide layer between FOX regions with a blanket lower lamina for a gate on the surface. A Mask code mask has a window overlying the desired gate location. A doped code implant region is formed in the substrate by ion implanting code implant dopant through the mask. Following mask removal a blanket upper lamina of the gate covers the lower lamina. A gate mask covers the upper and lower laminae. The gate mask is patterned to protect the gate region over the device, leaving the remainder of the upper and lower lamina exposed. Exposed surfaces of the laminae are etched away leaving a laminated gate. Lightly doped regions are formed in the substrate between the FOX regions and the gate by ion implanting dopant through portions of the gate oxide layer unprotected by the gate; forming spacers next to the gate; and forming source and drain regions in the substrate between the FOX regions and the spacers adjacent to the gate.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: July 11, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yeh-Jye Wann, Hsien-Tsong Liu
  • Patent number: 6084276
    Abstract: A semiconductor MOSFET device is formed on a silicon substrate which includes trenches filled with Shallow Trench Isolation dielectric trench fill structures and extending above the surface of the substrate. The trench fill structures have protruding sidewalls with channel regions in the substrate having corner regions adjacent to the trench fill structures. The channel regions are between and adjacent to the STI trench fill structures doped with one concentration of dopant in the centers of the channel regions with a higher concentration of dopant in the corner regions. The dopant concentration differential provides a substantially equal concentration of electrons in the centers and at the corner regions of the channel regions.
    Type: Grant
    Filed: June 22, 1999
    Date of Patent: July 4, 2000
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Peter Gambino, Gary Bela Bronner, Jack Allan Mandelman, Larry Alan Nesbit
  • Patent number: 6079304
    Abstract: A shingle trimming tool comprises a stationary and and a movable blades with edges. When a manually operated lever is lowered, the movable blade is mounted to reciprocate towards a closed position with the edges in contact and returns to an open position. The blade moves with a sliding action in which the reciprocating edge is driven into confrontation with the stationary edge to pinch work between the blades. When the lever is raised, then the movable blade slides back to an open position. The fixed blade and a pair of matched bell cranks are supported by a frame. The movable blade is supported by the bell cranks which hold the sharp edge of the movable blade parallel to the sharp edge of the lower blade during the entire reciprocal path traversed from open to closed position and back to the open position. The lever is connected to links provides leverage to force the movable blade down into contact with the stationary blade.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: June 27, 2000
    Assignee: Wondebar Construction Corporation
    Inventor: James David Bisceglia
  • Patent number: 6078087
    Abstract: A contact between a conductor and a substrate region in a MOSFET SRAM device is formed by a dielectric layer on the surface of a partially completed SRAM device with pass transistors and latch transistors with the dielectric layer being formed above those pass and latch transistors. A thin film transistor gate electrode and an interconnection line are formed on the upper surface of the dielectric layer. A gate oxide layer covers the gate electrode and the interconnection line. A polysilicon conductive layer which covers the gate oxide layer includes a channel region between a source region and a drain region which are formed on opposite sides of the channel region. There is a channel mask formed self-aligned with the channel region formed above the channel region as well as being above the gate electrode. The polysilicon conductive layer is doped aside from the channel mask thereby providing a source region and a drain region on opposite sides of the channel region.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: June 20, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo Ching Huang, Yean-Kuen Fang, Mong-Song Liang, Cheng-Yeh Shih, Dun Nian Yaung
  • Patent number: 6078076
    Abstract: A method of forming a vertical memory split gate flash memory device on a silicon semiconductor substrate is provided by the following steps. Form a floating gate trench hole in the silicon semiconductor substrate, the trench hole having trench surfaces. Form a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. Form a floating gate electrode layer filling the trench hole on the outer surfaces of the tunnel oxide layer. Form source/drain regions in the substrate self-aligned with the floating gate electrode layer. Pattern the floating gate electrode layer by removing the gate electrode layer from the drain region side of the trench hole Form a control gate hole therein. Form an interelectrode dielectric layer over the top surface of the floating gate electrode, and over the tunnel oxide layer.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: June 20, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong-Jung Lin, Chia-Ta Hsieh, Jong Chen, Di-Son Kuo
  • Patent number: 6074786
    Abstract: A reticle, for use in a stepper, and a method for using the reticle are provided. The reticle is used in performing the method for inspecting for the leveling of the reticle with respect to a semiconductor wafer being exposed by the stepper. Reticle alignment marks are used to measure reticle leveling by determining the degree of resolution at several sites on the semiconductor workpiece. The reticle can be patterned with a plurality of sets of alignment marks having an array of blocks which are in focus at different focal lengths. The alignment marks include marks located proximate to the corners of the reticle and proximate to the center of the reticle. Microscope measurements are made to determine the focal length at each set of alignment marks. Reticle pitch is determined at each workpiece position from the focal lengths measured at each alignment mark. The leveling can be checked repeatedly to obtain information for producing optimum focus of the reticle image on the workpiece.
    Type: Grant
    Filed: April 10, 1998
    Date of Patent: June 13, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Yung-Shu Chiang
  • Patent number: 6060360
    Abstract: A flash EEPROM or split gate flash EEPROM is made on a doped silicon semiconductor N-well formed in a doped semiconductor substrate. A channel with a given width is formed in the N-well which is covered with a tunnel oxide layer, and an N+ doped polysilicon floating gate electrode layer, which can be patterned into a split gate floating gate electrode having a narrower width than the channel width. An interelectrode dielectric layer is formed over the floating gate electrode and the exposed tunnel oxide. A control gate electrode includes a layer composed of P+ doped polysilicon over the interelectrode dielectric layer. The tunnel oxide layer, the floating gate electrode layer, the interelectrode dielectric layer, and the control gate electrode are patterned into a gate electrode stack above the channel. A source region and a drain region are formed in the surface of the substrate with a P type of dopant, the source region and the drain region being self-aligned with the gate electrode stack.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: May 9, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yai-Fen Lin, Shiou-Hann Liaw, Di-Son Kuo, Juang-Ke Yeh
  • Patent number: 6057186
    Abstract: Form a butted contact in an SRAM memory device by exposing a contact region on the surface of a doped semiconductor substrate and a conductor stack above a field oxide region on the surface of the substrate. Form an interpolysilicon silicon oxide dielectric layer over the device with an opening framing the contact region and the butt end of the conductor stack near the contact region. Form an undoped upper polysilicon layer on the surface of the SRAM device covering the dielectric layer, the contact region, and the butt end of the conductor stack and then patterned into interconnect and load resistance parts. Form a Vcc mask on the surface of the undoped upper polysilicon layer with a window framing the dielectric layer, the contact region, and the butt end of the conductor stack, leaving an exposed region of the undoped upper polysilicon layer.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: May 2, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yeong-Rong Chang, Hung-Che Liao
  • Patent number: 6053241
    Abstract: A method of cooling a deflection system for a particle beam, containing vibration sensitive deflection devices comprises providing a vibrating cooled heat exchange structure spaced away from the vibration sensitive deflection devices. The technique used is transmission of the heat away from the vibration sensitive devices to the heat exchange structure through a high thermal conductivity structure such as a cold plate. The heat is transmitted from a static heat exchange structure with a static, inert fluid through cold plates to a vibrating heat exchanger cooled by turbulent liquid passing through a cooling coil in the heat exchanger.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: April 25, 2000
    Assignee: Nikon Corporation
    Inventor: Rodney Arthur Kendall
  • Patent number: 6051458
    Abstract: A semiconductor device is formed on a semiconductor substrate with an N-well and a P-well with source/drain sites in the N-well and in the P-well by the following steps. Form a gate oxide layer and a gate electrode layer patterned into a gate electrode stack with sidewalls over a substrate with N-well and P-well. Form N- LDS/LDD regions in the P-well. Form N- LDS/LDD regions in the P-well and P- lightly doped halo regions in the P-well below the source site and the drain site in the P-well. Form a counter doped halo region doped with N type dopant below the source region site in the P-well. Form spacers on the gate electrode sidewalls. Then, form lightly doped regions self-aligned with the gate electrode in the source/drain sites. Form N+ type doped source/drain regions deeper than the N- LDS/LDD regions in the P-well in the source/drain sites. Form P+ type doped source/drain regions deeper than the P- LDS/LDD regions in the N-well in the source/drain sites.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: April 18, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Mong-Song Liang, Shyh-Chyi Wong
  • Patent number: 6046108
    Abstract: Form a dielectric layer on a surface of a conductive substrate with a trench through the top surface down to the substrate. Form a barrier layer over the dielectric layer including the exposed surface of the conductive substrate and the exposed sidewalls of the dielectric layer. Form a copper conductor over the barrier layer and overfilling the narrow hole in the trench. Etch away material from the surface of the copper conductor by a CMP process lowering the copper leaving a thin layer of copper over the barrier layer above the dielectric layer aside from the hole. Form a copper passivation by combining an element selected from silicon and germanium with copper on the exposed surfaces of the copper surfaces forming an interface in the narrower hole between the copper and the copper compound located below the dielectric top level.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: April 4, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chung-Shi Liu, Chen-Hua Yu, Tien-I Bao, Syun-Ming Jang
  • Patent number: 6040996
    Abstract: An EEPROM MOSFET memory device with a floating gate and control gate stack above source and drain regions formed in a substrate self-aligned with the stack. There is a means for writing data to the floating gate electrode by applying an upwardly stepwise increasing control gate voltage V.sub.CG1 waveform applied to the control gate of the EEPROM device. The waveform is a voltage ramp providing a substantially constant tunneling current into the floating gate electrode which is approximately constant with respect to time so programming speed and the number of write/erase cycles is increased. The means for threshold voltage testing compares the voltage of the drain electrode to a reference potential.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: March 21, 2000
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Sik On Kong
  • Patent number: 6031264
    Abstract: A flash EPROM device includes a floating gate electrode with a top surface and sidewalls is formed on a gate oxide layer covering a semiconductor substrate. A polyoxide cap layer is formed on the top surface of the floating gate electrode. A blanket tunnel oxide layer covers the cap layer, the sidewalls of the floating gate electrode, and the exposed surfaces of the gate oxide layer. A spacer structure is formed on the surface of the tunnel oxide layer adjacent to the sidewalls of the floating gate electrode and above the gate oxide layer. A dielectric, silicon nitride inner spacer, having an annular or an L-shaped cross section, is formed on the blanket tunnel oxide layer adjacent to the sidewalls of the floating gate electrode. In the case of the L-shaped cross section inner spacer, an outer dielectric, spacer is formed over the inner dielectric, spacer. A blanket interelectrode dielectric layer covers the blanket tunnel oxide layer, and the spacer structure.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: February 29, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Wen-Cheng Chien, Hui-Jen Chu, Chen-Peng Fan
  • Patent number: 6024828
    Abstract: A workpiece with a back surface and a front surface has a layer formed on the front surface thereof which is to be etched by plasma etching. The workpiece is placed on a lower electrode in a plasma etching system with the back surface resting on the lower electrode. The workpiece is clamped to the lower electrode. A gas circulation system is formed in the surface of the lower electrode to supply heated gas, under pressure, to the back surface of a workpiece placed thereon to cause the workpiece to bow thereby forming a vaulted space below the workpiece. Then, while heating the back of the workpiece in this way, plasma etching of the layer upon the workpiece is performed.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: February 15, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Yuan Ko Hwang
  • Patent number: 6023067
    Abstract: A charged particle beam projection system includes a source of charged particles and a first doublet of condenser lenses with a first symmetry plane through which the beam is directed, located lower on the column. A trim aperture element is located at the first symmetry plane of the first doublet wherein the trim aperture serves as a first blanking aperture. Below the trim aperture there is a shaping aperture. Next is a second doublet of condenser lenses with a second symmetry plane. A third aperture, which is located at the symmetry plane of the second doublet serves as another blanking aperture.
    Type: Grant
    Filed: August 22, 1998
    Date of Patent: February 8, 2000
    Assignee: Nikon Corporation
    Inventors: Werner Stickel, Steven Douglas Golladay
  • Patent number: 6017771
    Abstract: A method and system provide for yield loss analysis for use in determining the killer stage in the manufacture of a semiconductor wafer at a plurality of manufacturing stages. The method comprising the following steps. Inspect semiconductor devices on the wafer visually to identify the location of visual defects on dies being manufactured on the wafer and to maintain a count of visual defects on the dies by location. Inspect the semiconductor dies on the wafer to determine the location and number defective dies on the wafer at each of the manufacturing stages. Calculate the defective die count for each stage for the wafer. Calculate the defective bad die count for each stage for the wafer. Determine the percentage of the defective bad die count divided by the defective die count. Plot the trend of the percentage of yield loss and the percentage of defective bad dies for each of the manufacturing stages.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: January 25, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiunn-Der Yang, Renn-Shyan Yeh, Chao-Hsin Chang, Wen-Chen Chang
  • Patent number: 6013551
    Abstract: A method of manufacture of self-aligned floating gate, flash memory device on a semiconductor substrate includes the following steps. Form a blanket silicon oxide layer over the substrate. Form a blanket floating gate conductor layer over the silicon oxide layer. Pattern the blanket silicon oxide layer, the floating gate conductor layer and the substrate in a patterning process with a single floating gate electrode mask forming floating gate electrodes from the floating gate conductor layer and the silicon oxide layer; and simultaneously form trenches in the substrate adjacent to the floating gate electrode and aligned with the floating gate electrodes thereby patterning the active region in the substrate. Form a blanket dielectric layer on the device filling the trenches and planarized with the top surface of the floating gate electrodes. Form an interconductor dielectric layer over the device including the floating gate electrodes. Form a control gate conductor over the interconductor dielectric layer.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: January 11, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jong Chen, Chrong Jung Lin
  • Patent number: 6011288
    Abstract: A vertical memory device on a silicon semiconductor substrate comprises a floating gate trench in the substrate, in the array, the trench. The walls of the floating gate trench were doped with a threshold implant through the trench surfaces. There is a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. There is a floating gate electrode in the trench on the outer surfaces of the tunnel oxide layer. There are source/drain regions in the substrate self-aligned with the floating gate electrode. The source line and a drain line form above the source region and the drain region respectively. An interelectrode dielectric layer overlies the top surface of the floating gate electrode, and the source line and the drain line, and there is a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: January 4, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chrong-Jung Lin, Shui Hung Chen, Jong Chen, Di-Son Kuo