Patents Represented by Attorney M. B. Kurtzman
  • Patent number: 4677088
    Abstract: An aromatic hydrocarbon modified soluble mixed aluminum hydrocarbyl-Lewis base co-catalyst composition comprising (i) at least two different classes of aluminum hydrocarbyls the first being an aluminum hydrocarbyl halide, the second being an aluminum hydrocarbyl hydride and/or aluminum trialkyl and (ii) at least one Lewis base represented by the formula: ##STR1## wherein each Y can be --OR', --NR.sub.2 and R' with the proviso that at least two be --OR' or --NR.sub.2, Z is an alkylene radical forming a 5 or 6 membered ring with the carbonyldioxy group or Z is alkyl substituted alkylene group wherein the alkyl radical can have from 1 to 8 carbon atoms, R is an aryl, allyl or alkyl group having from 1 to 20 carbon atoms and R' is an alkyl, cycloalkyl, aryl or aralkyl radical having from 1 to 20 carbon atoms.The co-catalyst is employed with a titanium halide catalyst for the polymerization of olefins to obtain a advantageous balance of catalytic activity and polymer product stereoregularity.
    Type: Grant
    Filed: May 30, 1986
    Date of Patent: June 30, 1987
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Terrence Huff, Arthur W. Langer, Jr.
  • Patent number: 4665208
    Abstract: A process for the preparation of hydrocarbylalumoxanes comprising oligomeric, linear and/or cyclic hydrocarbylalumoxanes, which comprises contacting a hydrocarbylaluminum dissolved in an inert dry organic liquid with a hydrated salt of a metal which is not reduced during contact with the trihydrocarbylaluminum at temperatures between -30.degree. C. and 110.degree. C.
    Type: Grant
    Filed: July 11, 1985
    Date of Patent: May 12, 1987
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Howard C. Welborn, Jr., Erik G. M. Tornqvist
  • Patent number: 4665262
    Abstract: An olefin polymerization catalyst system comprising (I) a polymerization catalyst produced by treating an inert support material, preferably a hydrated high surface area silica support having 1.00 to 1.50 hydroxyls per gram of silica with the reaction product of an organomagnesium compound and first a zirconium compound and/or a hafnium compound then a halogenator and tetravalent titanium compound, (II) an organoaluminum compound cocatalyst and (III) a chlorinated hydrocarbon promoter which produces polymers having broad molecular weight distribution in high yields.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: May 12, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Victoria Graves
  • Patent number: 4657998
    Abstract: Catalyst system comprising titanium containing catalyst component, isoprenylaluminum and a halohydrocarbon for the production of polyethylene having a broad molecular weight distribution.
    Type: Grant
    Filed: March 17, 1986
    Date of Patent: April 14, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Dennis B. Malpass
  • Patent number: 4657980
    Abstract: A thermoplastic resin composition which comprises 80 to 95 wt % of polycarbonate resin and 5 to 20 wt % of poly-p-methylstyrene. The thermoplastic resin composition is useful as a molding material for automotive parts, electric appliances, other industrial products and articles for daily use.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: April 14, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Yuji Fujita, Noboru Yamamoto
  • Patent number: 4657997
    Abstract: A vanadium-containing catalyst component useful for the polymerization of olefins to polyolefins having a high molecular weight and a broad molecular weight distribution comprising polymerizing the polyolefins in the presence of a catalyst comprising (A) a vanadium-containing catalyst component obtained by contacting an inert support material with a dihydrocarbyl magnesium compound, optionally an oxygen-containing compound, a vanadium compound, a Group III metal halide, and (B) an aluminum alkyl cocatalyst.
    Type: Grant
    Filed: December 9, 1985
    Date of Patent: April 14, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4654318
    Abstract: A process for preparing a catalyst component for the polymerization of olefins which comprises the steps of contacting (a) a magnesium dialkoxide soluble in an inert solvent, (b) a silicon compound having the hydrogen-silicon bond, and (c) an electron donor compound with one another in the presence of an inert solvent, and contacting the resulting reaction product with (d) a titanium compound.
    Type: Grant
    Filed: February 26, 1985
    Date of Patent: March 31, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Tadashi Yamamoto, Masafumi Imai, Hiroyuki Furuhashi, Hiroshi Ueno, Naomi Inaba
  • Patent number: 4652541
    Abstract: A catalyst component for polymerization of olefins which is prepared by reacting a magnesium alkoxide with a silicon compound having at least one hydrogen-silicon bond, contacting the reaction product with a carboxylic acid halide and/or carboxylic acid anhydride, and contacting the resulting contact product with a titanium compound.
    Type: Grant
    Filed: August 20, 1984
    Date of Patent: March 24, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masafumi Imai, Tadashi Yamamoto, Hiroyuki Furuhashi, Hiroshi Ueno, Naomi Inaba
  • Patent number: 4640907
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, an acyl halide and titanium tetrachloride and a Group IIIa hydrocarbyl metal dihalide and prepolymerizing the solid with a minor amount of ethylene.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: February 3, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4639428
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, an acyl halide and titanium tetrachloride, a Group IIIa hydrocarbyl metal dihalide and Cl.sub.2, Br.sub.2, an interhalogen or mixtures thereof.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: January 27, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4634747
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, an acyl halide and titanium tetrachloride and Cl.sub.2, Br.sub.2 or an interhalogen.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4634749
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, an acyl halide and titanium tetrachloride and a Group IIIa hydrocarbyl metal dihalide.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4634746
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a treated titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, a halogen, interhalogen compound or halosilane and titanium tetrachloride.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventors: Bradley P. Etherton, Malcolm J. Kaus
  • Patent number: 4634751
    Abstract: A vanadium containing catalyst component useful for polymerizing olefins to polyolefins having a high molecular weight and broad molecular weight distribution comprising polymerizing the olefins in the presence of a catalyst comprising (a) a vanadium containing catalyst component obtained by contacting an inert support material with an organoaluminum compound, an acyl halide and a vanadium compound, and (b) an aluminum alkyl cocatalyst.
    Type: Grant
    Filed: December 9, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4634748
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, optionally an oxygen containing compound, titanium tetrachloride and a Group IIIa metal hydrocarbyl dihalide.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4634687
    Abstract: A cocatalyst employed with a titanium-containing catalyst, said titanium-containing catalyst comprising titanium atoms, halogen atoms, and an electron donor compound, said cocatalyst comprising(a) an organoaluminum compound represented by the formula R.sup.1 R.sup.2 R.sup.3 (wherein R.sup.1, R.sup.2, and R.sup.3 which may be the same or different, each denote a C.sub.1-20 alkyl, alkenyl, cycloalkyl, aryl, aralkyl, or alkoxy group, or a hydrogen atom;(b) an organoaluminum compound represented by the formula R.sub.3-n.sup.4 AlX.sub.n (wherein R.sup.4 denotes a C.sub.1-20 alkyl, alkenyl, cycloalkyl, aryl, aralkyl, or alkoxy group; X denotes a halogen atom; and n.gtoreq.1),(c) an electron donor compound containing a nitrogen atom, sulfur atom, oxygen atom, or phosphorus atom, and(d) an aromatic carboxylic acid ester.The catalyst is useful for the polymerization of olefins.
    Type: Grant
    Filed: December 19, 1985
    Date of Patent: January 6, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masahito Fujita, Masami Kizaki, Makoto Miyazaki, Naomi Inaba
  • Patent number: 4626520
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, a halogen agent other than Cl.sub.2, Br.sub.2 and an interhalogen compound, titanium tetrachloride and Cl.sub.2, Br.sub.2, an interhalogen or mixtures thereof.
    Type: Grant
    Filed: January 22, 1986
    Date of Patent: December 2, 1986
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4625003
    Abstract: A titanium halide containing catalyst component for polymerization of olefins which is prepared by reacting a magnesium hydrocarbyloxide with a silicon compound having at least one hydrogen-silicon bond, contacting the reaction product with an electron donor compound, contacting the resulting contact product two or more times with a titanium halide and between one of the multiple titanium halide contacts, contacting the titanium halide contacted solid with a halide of an element selected from the group consisting of elements of Groups IIIa, IVa, and Va of the Periodic Table of elements.
    Type: Grant
    Filed: August 30, 1985
    Date of Patent: November 25, 1986
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masafumi Imai, Tadashi Yamamoto, Hiroyuki Furuhashi, Hiroshi Ueno, Naomi Inaba
  • Patent number: 4618660
    Abstract: An olefin polymerization catalyst produced by treating an inert support material, preferably a hydrated high surface area silica support having 1.00 to 1.50 hydroxyls per gram of silica with the reaction product of an organomagnesium compound and first a zirconium compound then a halogenator and tetravalent titanium compound, which when used as a cocatalyst with an organoaluminum compound produces polymers having broad molecular weight distribution.
    Type: Grant
    Filed: August 30, 1985
    Date of Patent: October 21, 1986
    Assignee: Exxon Research & Engineering Co.
    Inventor: Victoria Graves
  • Patent number: 4618596
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting in the presence of a porous particulate material, a halogen, an organic magnesium compound, an oxygen-containing compound, titanium tetrachloride and treating the solids with an organometallic compound of a Group IIa, IIb or IIIa metal.
    Type: Grant
    Filed: July 26, 1985
    Date of Patent: October 21, 1986
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Agapios K. Agapiou, Michael E. Muhle, Myron B. Kurtzman