Patents Represented by Attorney, Agent or Law Firm Peter K. McLarty
  • Patent number: 7187033
    Abstract: High side extended-drain MOS driver transistors (T2) are presented in which an extended drain (108, 156) is separated from a first buried layer (120) by a second buried layer (130), wherein an internal or external diode (148) is coupled between the first buried layer (120) and the extended drain (108, 156) to increase the breakdown voltage.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 6, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Patent number: 7183165
    Abstract: Dual gate dielectric layers are formed on a semiconductor substrate for MOS transistor fabrication. A first dielectric layer (30) is formed on a semiconductor substrate (10). A first plasma nitridation process is performed on said first dielectric layer. The first dielectric layer (30) is removed in regions of the substrate and a second dielectric layer (50) is formed in these regions. A second plasma nitridation process is performed on the first dielectric layer and the second dielectric layer. MOS transistors (160, 170) are then fabricated using the dielectric layers (30, 50).
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: February 27, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Rajesh Khamankar, Douglas T. Grider, Hiroaki Niimi, April Gurba, Toan Tran, James J. Chambers
  • Patent number: 7176076
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: February 13, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay, Luigi Colombo
  • Patent number: 7169659
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively apply strain to channel regions of devices while mitigating masking operations employed. A CAPOLY layer is formed over an NMOS region of a semiconductor device (102). A recess etch is performed on active regions of devices within a PMOS region of the semiconductor device (104) and the CAPOLY layer prevents etching of devices within an NMOS region of the semiconductor device. Subsequently, an epitaxial formation process (106) is performed that forms or deposits epitaxial regions and introduces a first type of strain across the channel regions in the PMOS region. Then, the semiconductor device is annealed (108) to cause the CAPOLY layer to introduce a second type of strain across the channel regions in the NMOS region. After annealing, the CAPOLY layer is removed (110).
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: January 30, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Antonio L. P. Rotondaro, Seetharaman Sridhar
  • Patent number: 7171335
    Abstract: According to one embodiment, a method of analyzing semiconductor test data includes receiving a plurality of raw data entries from a testing system. Each raw data entry is associated with a test structure of a semiconductor device, and each raw data entry is uniquely identified by a name including a plurality of parseable fields. The plurality of data entries is parsed using a selected one of the plurality of parseable fields to identify a grouping of raw data entries. At least one reportable parameter indicative of the functionality of the test structures associated with the grouping of raw data entries is calculated, and the at least one reportable parameter is provided to a user.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: January 30, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Jin Liu, Pamula Jean Jones-Williams, Emily A. Donnelly, Jianglin Wang
  • Patent number: 7166858
    Abstract: The present invention provides a single-electron transistor device 100. The device comprises a source 105 and drain 110 located over a substrate 115 and a quantum island 120 situated between the source and drain, to form tunnel junctions 125, 130 between the source and drain. The device further includes a fixed-gate electrode 135 located adjacent the quantum island 120. The fixed-gate electrode has a capacitance associated therewith that varies as a function of an applied voltage to the fixed-gate electrode. The present invention also includes a method of fabricating a single-electron device 300, and a transistor circuit 800 that include a single-electron device 810.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: January 23, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Christoph Wasshuber
  • Patent number: 7163878
    Abstract: In one aspect, the present invention provides a method of forming junctions in a silicon-germanium layer (20). In this particular embodiment, the method comprises implanting a dopant (80) into the silicon-germanium layer (20) and implanting fluorine (70) into the silicon-germanium layer (20).
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: January 16, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Puneet Kohli, Mark Rodder, Rick Wise, Amitabh Jain
  • Patent number: 7160782
    Abstract: The present invention provides a trench isolation structure, a method of manufacture therefor and a method for manufacturing an integrated circuit including the same. The trench isolation structure (130), in one embodiment, includes a trench located within a substrate (110), the trench having an implanted buffer layer (133) located in the sidewalls thereof. The trench isolation structure (130) further includes a barrier layer (135) located over the implanted buffer layer (133), and fill material (138) located over the barrier layer (135) and substantially filling the trench.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: January 9, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Rick L. Wise, Mark S. Rodder
  • Patent number: 7157358
    Abstract: The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the semiconductor device. The method for manufacturing the semiconductor device, among other possible steps, forming a polysilicon gate electrode (250) over a substrate (210) and forming a protective layer (260) over the polysilicon gate electrode (250) to provide a capped polysilicon gate electrode (230). The method further includes forming a protective oxide (510) on a surface proximate the polysilicon gate electrode (250), and removing the protective oxide (510) using a wet etch, the wet etch not having a substantial impact on the protective layer (260).
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: January 2, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Lindsey Hall, Haowen Bu, Shaofeng Yu
  • Patent number: 7153711
    Abstract: The present invention provides a method for manufacturing semiconductor devices, a method for manufacturing an integrated circuit, and a method for improving a drive current for semiconductor devices on a wafer-by-wafer basis. The method for manufacturing semiconductor devices, among other elements, includes patterning gate structures on a substrate (220), each of the gate structures having a profile associated therewith, and obtaining information representative of the profiles of the gate structures (240). In accordance with the present invention the information may then be fed forward to alter a manufacturing parameter associated with a drive current of the semiconductor devices (250).
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: December 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: James B. Friedmann, Kaneez E-shaher Banu, Yuqing Xu, Jeffrey G. Loewecke, James D. Vaughan
  • Patent number: 7148140
    Abstract: A method of fabricating a semiconductor device is provided. An interlayer dielectric layer is formed on one or more semiconductor layers (402). One or more feature regions are formed in the interlayer dielectric layer (404). A first conductive layer is formed in at least a portion of the feature regions and on the interlayer dielectric layer (406)). A first anneal is performed that promotes grain growth of the first conductive layer (408). An additional conductive layer is formed on the first conductive layer (410) and an additional anneal is performed (412) that promotes grain growth of the additional conductive layer and further promotes grain size growth of the first conductive layer. Additional conductive layers can be formed and annealed until a sufficient overburden amount has been obtained. Subsequently, a planarization process is performed that removes excess conductive material and thereby forms and isolates conductive features in the semiconductor device (414).
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: December 12, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Montray Leavy, Stephan Grunow, Satyavolu S. Papa Rao, Noel M. Russell
  • Patent number: 7148143
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and a method for manufacturing an integrated circuit. The semiconductor device (100), among other possible elements, includes a silicided gate electrode (150) located over a substrate (110), the silicided gate electrode (150) having gate sidewall spacers (160) located on sidewalls thereof. The semiconductor device (100) further includes source/drain regions (170) located in the substrate (110) proximate the silicided gate electrode (150), and silicided source/drain regions (180) located in the source/drain regions (170) and at least partially under the gate sidewall spacers (160).
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: December 12, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Jiong-Ping Lu, Shaofeng Yu, Ping Jiang, Clint Montgomery
  • Patent number: 7144808
    Abstract: The present invention provides, in one embodiment, method of forming a barrier layer 300 over a semiconductor substrate 110. The method comprises forming an opening 120 in an insulating layer 130 located over a substrate thereby uncovering an underlying copper layer 140. The method further comprises exposing the opening and the underlying copper layer to a plasma-free reducing atmosphere 200 in the presence of a thermal anneal. The also comprises depositing a barrier layer in the exposed opening and on the exposed underlying copper layer. Such methods and resulting conductive structures thereof may be advantageously used in methods to manufacture integrated circuits comprising copper interconnects.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: December 5, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Sanjeev Aggarwal, Kelly J. Taylor
  • Patent number: 7134947
    Abstract: According to one embodiment of the invention, a chemical mechanical polishing system includes a platen having a first surface adapted to couple a polishing pad thereto. The first surface includes a generally circular center portion and an annular portion surrounding the generally circular center portion. The generally circular center portion encloses an area and has an attachment surface area that is less than the area enclosed by the generally circular center portion. The attachment surface area is adapted to couple an inner portion of the polishing pad to the platen. According to one embodiment of the invention, a chemical mechanical polishing system includes a platen having a first surface coupling a polishing pad thereto. The first surface includes a generally circular center portion and an annular portion surrounding the generally circular center portion.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: November 14, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: David A. Stark, Christopher Schutte
  • Patent number: 7132365
    Abstract: A method of preparing a die comprises treating exposed silicon to form an oxide prior to silicide formation; and depositing metal on the oxide. The metal may comprise titanium, cobalt, nickel, platinum, palladium, tungsten, molybdenum, or combinations thereof on the oxide. The oxide may be less than or equal to about 15 angstroms thick. In various embodiments, treating exposed silicon to form an oxide comprises forming a non-thermal oxide. Treating exposed silicon to form an oxide may also comprise treating the exposed silicon with an oxidizing plasma; alternatively, treating exposed silicon to form an oxide may comprise forming a chemical oxide. In certain other embodiments, treating exposed silicon to form an oxide comprises treating exposed silicon with a solution comprising ammonium hydroxide, hydrogen peroxide, and water; hydrochloric acid, hydrogen peroxide, and water; hydrogen peroxide; ozone; ozonated deionized water; or combinations thereof.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: November 7, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Sue Ellen Crank, Shirin Siddiqui, Deborah J. Riley, Trace Quentin Hurd, Peijun J. Chen
  • Patent number: 7132340
    Abstract: Methods (600, 700) are disclosed for minimizing the effect of pocket shadowing in the fabrication of an angled pocket implant (32) extending underlying a gate region (21) of a transistor (10), particularly in SRAM devices (400). The pocket shadowing is minimized by initially forming a relatively thick resist layer (810) overlying the semiconductor device (800), then the resist layer thickness (810y) is reduced (trimmed) to a reduced thickness (860y) by using a subsequent post-development dry or wet resist-reduction etch process (630, 730). The etch process (630, 730) also increases corner rounding (860r), thereby reducing pocket shadowing of the angled implant from nearby features or the resist (228, 328, 860). The pocket shadow reduction may be accomplished by first forming (610, 710) the relatively thick resist layer (810) overlying the semiconductor device (400, 800).
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: November 7, 2006
  • Patent number: 7129582
    Abstract: A method of forming a semiconductor device includes implanting a precipitate into a gate conductor of an at least partially formed semiconductor device. The gate conductor including a plurality of semiconductor grains. The boundaries of adjacent grains forming a dopant migration path. A plurality of precipitate regions are formed within the gate conductor. At least some of the precipitate regions located at a junction of at least two grains. The gate conductor of the at least partially formed semiconductor device is doped with a dopant. The dopant diffuses inwardly along the dopant migration path.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: October 31, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Kaiping Liu, Zhiqiang Wu, Jihong Chen
  • Patent number: 7127359
    Abstract: According to various embodiments, there is a method of inspecting semiconductor wafers comprising comparing a value for each wafer in a lot of wafers to a mathematical model, where the values include data about at least one feature on the wafers, and where the mathematical model comprises a threshold value corresponding to the at least one feature, and further where values greater than the threshold value comprise an indication of a spin defect. The method can also comprise determining whether any of the values of the wafers in the lot are not greater than the threshold value, grouping into a group (P) those wafers whose values are not greater than the threshold value, and flagging for further inspection those wafers having values greater than the threshold value.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: October 24, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Aditya Chityala, Errol Philip Akomer, Jason Charles Tervooren
  • Patent number: 7122413
    Abstract: The present invention provides a method of manufacturing a single-electron transistor device (100). The method includes forming a thinned region (110) in a silicon substrate (105), the thinned region (110) offset by a non-selected region (115). The method also includes forming at least one quantum island (145) from the thinned region (110) by subjecting the thinned region (110) to an annealing process. The non-selected region (115) is aligned with the quantum island (145) and tunnel junctions (147) are formed between the quantum island (145) and the non-selected region (115). The present invention also includes a single-electron device (200), and a method of manufacturing an integrated circuit (300) that includes a single-electron device (305).
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: October 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Christoph Wasshuber, Gabriel George Barna, Olivier Alain Faynot
  • Patent number: 7118977
    Abstract: According to one embodiment of the present invention, a method of forming a semiconductor device includes forming a gate stack on an outer surface of a semiconductor body. First and second sidewall bodies are formed on opposing sides of the gate stack. A first recess is formed in an outer surface of the gate stack, and a first dopant is implanted into the gate stack after the first recess is formed. The first dopant diffuses inwardly from the outer surface of the gate stack that defines the first recess. The first dopant diffuses toward an interface between the gate stack and the semiconductor body. The first recess increases the concentration of the first dopant at the interface.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: PR Chidambaram, Srinivasan Chakravarthi