Patents Represented by Attorney, Agent or Law Firm Stephen A. Gratton
  • Patent number: 6620633
    Abstract: A bumped semiconductor component includes bumped contacts, a semiconductor die having die contacts, and a redistribution circuit having conductors for establishing electrical communication between the die contacts and the bumped contacts. The redistribution circuit also includes test contacts in electrical communication with the die contacts and with the bumped contacts. The test contacts allow the die to be tested without electrical engagement of the bumped contacts. The bumped semiconductor component can be contained on a wafer, or can be a singulated component such as a flip chip package. A test system includes the bumped semiconductor component, and an interconnect having contacts configured to electrically engage the test contacts without interference from the bumped contacts. If the test contacts are aligned with the die contacts, the same interconnect can be used to test the bare die as well as the bumped component.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: September 16, 2003
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Jorge L. de Varona
  • Patent number: 6614104
    Abstract: A semiconductor package includes a substrate and a semiconductor die wire bonded, or alternately flip chip bonded, to the substrate. The substrate includes three separate layers including a conductive layer having a pattern of conductive traces, a first insulating layer covering the conductive traces, and a second insulating layer covering the die. The insulating layers also include planar surfaces having external contacts, and conductive vias in electrical communication with the external contacts and with the conductive traces. The external contacts have matching patterns, such that the package can be stacked on a substantially identical package to form a stacked electronic assembly. In addition, the packages in the stacked assembly can have different circuit configurations, and can perform different functions in the assembly.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: September 2, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, Mike Brooks
  • Patent number: 6611052
    Abstract: A stackable semiconductor package includes a semiconductor die, and has a chip sized peripheral outline matching that of the die. In addition to the die, the package includes stacking pads and stacking contacts on opposing sides of the die, and conductive grooves on the edges of the die in electrical communication with the stacking pads and the stacking contacts. The conductive grooves function as interlevel conductors for the package and can also function as edge contacts for the package. The configuration of the stacking pads, of the stacking contacts and of the conductive grooves permit multiple packages to be stacked and electrically interconnected to form stacked assemblies. A method for fabricating the package is if performed at the wafer level on a substrate, such as a semiconductor wafer, containing multiple dice. In addition, multiple substrates can be stacked, bonded and singulated to form stacked assemblies that include multiple stacked packages.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: August 26, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Chua Swee Kwang
  • Patent number: 6600334
    Abstract: A probe card for testing a semiconductor wafer, a test method, and a test system employing the probe card are provided. The probe card includes: a substrate; an interconnect slidably mounted to the substrate; and a force applying mechanism for biasing contacts on the interconnect into electrical engagement with contacts on the wafer. The force applying mechanism includes spring loaded electrical connectors that provide electrical paths to the interconnect, and generate a biasing force. The biasing force is controlled by selecting a spring constant of the electrical connectors, and an amount of Z-direction overdrive between the probe card and wafer. The probe card also includes a leveling mechanism for leveling the interconnect with respect to the wafer.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: July 29, 2003
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Warren M. Farnworth, James M. Wark
  • Patent number: 6600171
    Abstract: A method for fabricating contacts on semiconductor components includes the steps of testing the components, and then using test data to fabricate the contacts on only components that meet a predetermined criteria. Initially a substrate, such as a wafer or a panel, containing multiple semiconductor components, such as dice or packages, is provided. The components include integrated circuits, and component contacts in electrical communication with the integrated circuits. In a first embodiment, a ball bumper apparatus programmed with the test data forms contact bumps on dice contained on a semiconductor wafer. In a second embodiment, a ball bumper apparatus programmed with the test data forms contact bumps on packages contained on a panel. In a third embodiment, a stencil mask is patterned with openings using a laser scanner programmed with the test data, and solder is stenciled into the openings, and reflow bonded to the component contacts to form contact bumps.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: July 29, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, Douglas Kelly
  • Patent number: 6589810
    Abstract: A BGA package and a method for fabricating the package are provided. The package includes a semiconductor die, internal conductors wire bonded to bond pads on the die, external ball contacts attached to ball bonding pads formed on the conductors in a dense grid pattern, and an encapsulating resin encapsulating the die and conductors. The package is fabricated using a lead frame having lead fingers that form the conductors. The die is back bonded to a polymer tape placed across the lead fingers, and then wire bonded to bonding pads on the conductors. In addition, the encapsulating resin is molded to include openings for the ball contacts which are aligned with the ball bonding pads. An alternate embodiment BGA package includes a polymer substrate adhesively bonded to a face of the die. The polymer substrate includes conductors having beam leads aligned with an opening through the polymer substrate. The opening provides access for a bonding tool for bonding bumps on the beam leads to bond pads on the die.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Walter Moden
  • Patent number: 6589809
    Abstract: A method and a system for attaching semiconductor components to a substrate are provided. In the illustrative embodiment the substrate is a leadframe, and the components are semiconductor dice or packages contained on a component substrate such as a wafer. The method includes the steps of holding and dicing the component substrate using a radiation sensitive tape. The method also includes the steps of providing a component attach system having a radiation curing system, and then performing local curing of the dicing tape during a component attach step using the component attach system. The system includes the component attach system which includes a stepper mechanism for stepping the component substrate, and a component attach mechanism having an ejector pin for pushing the components one at a time from the tape and a pick and place mechanism for placing the components on the substrate.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Michel Koopmans
  • Patent number: 6582992
    Abstract: A stackable semiconductor package includes a semiconductor die, and has a chip sized peripheral outline matching that of the die. In addition to the die, the package includes stacking pads and stacking contacts on opposing sides of the die, and conductive grooves on the edges of the die in electrical communication with the stacking pads and the stacking contacts. The conductive grooves function as interlevel conductors for the package and can also function as edge contacts for the package. The configuration of the stacking pads, of the stacking contacts and of the conductive grooves permit multiple packages to be stacked and electrically interconnected to form stacked assemblies. A method for fabricating the package is performed at the wafer level on a substrate, such as a semiconductor wafer, containing multiple dice. In addition, multiple substrates can be stacked, bonded and singulated to form stacked assemblies that include multiple stacked packages.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: June 24, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Chua Swee Kwang
  • Patent number: 6569118
    Abstract: An adapter for a “LUER LOK” receptacle includes a housing having an internal recess configured to engage a hub of the receptacle. The adapter also includes a fitting attached to the housing, and to a medical instrument such as a cannula or a needle. The fitting includes a tapered recess configured to engage a tapered post of the receptacle. The fitting also includes a male end portion configured to engage female threads on the hub of the receptacle. The male end portion can include threads or alternately a flange. The adapter strengthens and rigidifies the receptacle, and allows the medical instrument to be aggressively manipulated, with less chance of damage to the receptacle and fluid leakage therefrom. In an alternate embodiment adapter, the tapered post of the receptacle is removed to provide an enlarged opening for the receptacle. The enlarged opening permits fluids, tissue and cells to be transferred with less damage and less resistance.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: May 27, 2003
    Inventors: Johnnie M. Johnson, Marc Pilkington
  • Patent number: 6563215
    Abstract: An interconnect for semiconductor components includes a substrate, and interconnect contacts on the substrate for electrically engaging component contacts on the components. The interconnect contacts include silicon carbide conductive layers, and conductors in electrical communication with the silicon carbide conductive layers. The silicon carbide conductive layers provides a wear resistant surface, and improved heat transfer between the component contacts and the interconnect contacts. The silicon carbide conductive layers can comprise doped silicon carbide, or alternately thermally oxidized silicon carbide. The interconnect can be configured for use with a testing apparatus for testing discrete components such as dice or chip scale packages, or alternately for use with a testing apparatus for testing wafer sized components, such as wafers, panels and boards. In addition, the interconnect can be configured for constructing semiconductor packages and electronic assemblies such as multi chip modules.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: May 13, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Alan G. Wood
  • Patent number: 6552427
    Abstract: A BGA package and a method for fabricating the package are provided. The package includes a semiconductor die, internal conductors wire bonded to bond pads on the die, external ball contacts attached to ball bonding pads formed on the conductors in a dense grid pattern, and an encapsulating resin encapsulating the die and conductors. The package is fabricated using a lead frame having lead fingers that form the conductors. The die is back bonded to a polymer tape placed across the lead fingers, and then wire bonded to bonding pads on the conductors. In addition, the encapsulating resin is molded to include openings for the ball contacts which are aligned with the ball bonding pads. An alternate embodiment BGA package includes a polymer substrate adhesively bonded to a face of the die. The polymer substrate includes conductors having beam leads aligned with an opening through the polymer substrate. The opening provides access for a bonding tool for bonding bumps on the beam leads to bond pads on the die.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: April 22, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Walter Moden
  • Patent number: 6543512
    Abstract: A carrier for semiconductor components, and a method and system for handling semiconductor components using the carrier, are provided. The carrier includes a frame having component mounting sites that include adhesive members for retaining the components on the carrier. The adhesive members can include one or more pieces of polymer tape having low tack adhesive surfaces for retaining the components, and high tack adhesive surfaces for bonding to the carrier. The low tack adhesive surfaces are formulated to provide adhesive forces sufficient to retain the components on the component mounting sites, but low enough to allow a conventional pick and place vacuum tool to remove the components from the carrier. The adhesive forces on the components are determined by a contact area between the components and low tack adhesive surfaces, and by adhesive qualities of the low tack adhesive surfaces.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Steven L. Hamren
  • Patent number: 6544461
    Abstract: A semiconductor carrier for testing semiconductor components, such as bare dice and chip scale packages, and a method for fabricating the carrier are provided. The carrier includes a molded plastic base, a lead frame, and an interconnect. The interconnect includes contacts for making temporary electrical connections with corresponding contacts (e.g., bond pads, solder balls) on the components. The carrier is fabricated by attaching the interconnect to the lead frame, and then molding the plastic base to the interconnect and lead frame. An alternate embodiment carrier includes a board to which multiple interconnects are molded or laminated. In addition, clip members retain the components on the board in electrical communication with the interconnects. A gasket may be used to protect the interconnect contacts during the molding step.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Salman Akram, Warren M. Farnworth, Alan G. Wood, Derek Gochnour, John O. Jacobson, James M. Wark, Syed Sajid Ahmad
  • Patent number: 6537850
    Abstract: A semiconductor component includes a substrate, bonding pads on the substrate, and terminal contacts bonded to the bonding pads. Exemplary components include semiconductor packages, semiconductor wafers and semiconductor dice. Exemplary terminal contacts include contact balls, contact bumps and contact columns. In each case, the terminal contacts can be arranged in a dense array, such as a ball grid array (BGA), or fine ball grid array (FBGA). The component also includes patterns of primary conductors on the substrate in electrical communication with the bonding pads and with the terminal contacts. Selected terminal contacts, particularly those most likely to experience fatigue failure due to thermal loads, are in electrical communication with the primary conductors and also with one or more secondary conductors. The secondary conductors are configured to provide alternate electrical paths for the selected terminal contacts should damage occur to the primary conductors.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: March 25, 2003
    Assignee: Micron Technology, Inc.
    Inventor: David J. Corisis
  • Patent number: 6529026
    Abstract: An interconnect for making temporary electrical connections with semiconductor components includes a substrate with patterns of elastomeric contacts adapted to electrically engage contact locations (e.g., bond pads, solder bumps) on the semiconductor components. The elastomeric contacts can be formed of conductive elastomer materials, such as anisotropic adhesives and silver filled silicone, having metal particles for penetrating the contact locations. The substrate also includes patterns of metal conductors having non-oxidizing contact pads, which provide low resistance bonding surfaces for the elastomeric contacts. A method for fabricating the interconnect includes the step of depositing bumps in a required size and shape using stenciling, screen printing, or other deposition process. Following deposition, the bumps can be cured and planarized to form the elastomeric contacts. During a test procedure, the elastomeric contacts can be loaded in compression to compliantly engage the contact locations.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 4, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Salman Akram
  • Patent number: 6506625
    Abstract: A semiconductor package, and a method for fabricating the package are provided. The package includes a plastic body, and a pair of stacked semiconductor dice encapsulated in the plastic body, and wire bonded to separate leadframe segments. A first leadframe segment includes lead fingers configured to support a first semiconductor die of the stacked pair, and to form terminal leads of the package. A second leadframe segment is attached to the first leadframe segment, and includes lead fingers that support a second semiconductor die of the stacked pair. The lead fingers of the second leadframe are in physical and electrical contact with the leadfingers of the first leadframe. In addition, tip portions of the lead fingers of the first leadframe segment are staggered relative to tip portions of the lead fingers of the second leadframe segment to provide space for bond wires.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 14, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Walter Moden
  • Patent number: 6507114
    Abstract: A BOC (board-on-chip) semiconductor package includes a semiconductor die having die contacts, a substrate bonded circuit side down to the die, and an adhesive layer bonding the substrate to the die. The substrate includes a circuit side having a pattern of conductors and wire bonding sites, and a back side having an array of external contacts (e.g., BGA solder balls) in electrical communication with the conductors. The bonding sites on the conductors overhang the peripheral edges of the substrate such that access is provided for bonding wires to the bonding sites and to the die contacts. Because the substrate is bonded circuit side down to the die, a loop height of the wires, and an overall height (profile) of the package are reduced by a thickness of the substrate. In addition, a planarity of molded segments that encapsulate the wires is improved, and mold bleed during molding of the molded segments is reduced.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: January 14, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Chong Chin Hui, Lee Choon Kuan, Lee Kian Chai
  • Patent number: 6504389
    Abstract: A test carrier for testing bumped semiconductor components such dice, chip scale packages, BGA devices, and wafers is provided. The test carrier includes a base for retaining one or more components and contact members for making temporary electrical connections with contact balls on the components (e.g., solder balls). The test carrier also includes terminal contacts formed as hard metal balls, as hard metal balls coated with a non-oxidizing metal layer, or as glass, ceramic or plastic members coated with a conductive material. The contact members on the base protect the contact balls on the components from deformation during testing and handling. The terminal contacts on the test carrier are configured for multiple uses in a production environment without deformation. Also provided is a calibration carrier for calibrating semiconductor test systems for bumped components, and a cleaning carrier for cleaning test sockets for bumped components.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: January 7, 2003
    Assignee: Micron Technology, Inc.
    Inventor: David R. Hembree
  • Patent number: D474873
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: May 27, 2003
    Assignee: Miles Willard Technologies, LLP
    Inventor: Bradley Cole Frazee
  • Patent number: D475173
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: June 3, 2003
    Assignee: Miles Willard Technologies, LLP
    Inventor: Bradley Cole Frazee