Patents Represented by Attorney Yingsheng Tung
  • Patent number: 7679002
    Abstract: In one aspect, the invention provides a semiconductor device that comprises a semiconductor device packaging substrate core. A first interconnect structure is located within a mold region and on a die side of the substrate core and has a first conductive metal density associated therewith. A second interconnect structure is located within the mold region and on a solder joint side of the substrate core and has a second conductive metal density associated therewith, wherein the second conductive metal density within the mold region is about equal to or less than the first conductive metal density within the mold region.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: March 16, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Masazumi Amagai, Kenji Masumoto
  • Patent number: 7679190
    Abstract: A raised solder-mask-defined (SMD) pad configured for receiving a solder ball on a laminate electronic circuit board and a method of creating the raised SMD pad on a laminate electronic circuit board. The method may comprise forming a base bump, covering the base bump with a conductive bump layer and layering a surrounding material over an extended edge of the conductive bump layer. The surrounding material is patterned to expose a pad face and of a portion of the sides of the conductive bump layer, such that the pad face is disposed above the surface of the surrounding material. The surrounding material may be patterned by a photolithography operation or alternatively, a laser-drill operation.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: March 16, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Tz-Cheng Chiu, Manjula N Variyam
  • Patent number: 7675152
    Abstract: Disclosed are methods and devices for providing improved semiconductor packages and POP IC assemblies using the improved packages with reduced warping. According to disclosed embodiments of the inventions, a packaged semiconductor device for use in a POP assembly includes an encapsulated region generally defined by the substrate surface. The encapsulant is provided with contact apertures permitting external communication with contacts on the substrate and coupled to an encapsulated chip. Preferred embodiments of the invention are described in which the contact aperture sidewalls are angled within the range of approximately 10-30 degrees or more from vertical and in which the contact aperture is provided a gas release channel to permit gas to escape during reflow.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 9, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Mark Allen Gerber, Shawn Martin O'Conner
  • Patent number: 7655552
    Abstract: A method, comprising bonding a first wire to a single die bond pad to form a first bond, bonding the first wire to a bond post to form a second bond, bonding a second wire to the first bond, and coupling the second wire to the bond post.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Mark Allen Gerber
  • Patent number: 7648857
    Abstract: The present invention provides a process for manufacturing an integrated circuit (IC) package and an integrated circuit (IC) package. The process, without limitation, includes providing an integrated circuit chip having a configuration, and forming a layer of overcoat material over the integrated circuit chip based upon the configuration.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: January 19, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Sean M. Malolepszy, Rex W. Pirkle
  • Patent number: 7646204
    Abstract: A system and method are disclosed for testing a settling time of a device-under-test (DUT). A method for determining a settling time of a device-under-test (DUT) includes activating a DUT to generate an output signal and mixing the output signal of the DUT and a reference signal to generate a mixed signal. An amplitude threshold is set for the mixed signal relative to an amplitude of the mixed signal and the settling time of the DUT is determined based on a last time that the amplitude of the mixed signal crosses the amplitude threshold relative to the activation of the DUT.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: January 12, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Lianrui Zhang
  • Patent number: 7640471
    Abstract: In a method and system for testing, a tester (110) is operable to communicate test signals (124, 126) at a tester clock speed, and a device (190) to be tested is operable to communicate the test signals (124, 126) at a device clock speed, the device clock speed being greater than the tester clock speed. A test module (120) is interposed between the tester (110) and the device (190) to enable data transfer between the tester (110) and the device (190) at their respective clock speeds. The test module (120) includes a memory module (250) capable of storing N samples of the test signals (124, 126) at a selectable one of the tester clock speed and the device clock speed. The memory module (250) is operable to provide the N samples at a selectable one of the tester clock speed and the device clock speed.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: December 29, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Yu Miao, Elizabeth Vigrass, Shawn C. Smith
  • Patent number: 7635613
    Abstract: A semiconductor device comprising a leadframe (903), which has first (903a) and second (903b) surfaces, a planar pad (910) of a certain size, and a plurality of non-coplanar members (913) adjoining the pad. The device further has a heat spreader (920) with first (920a) and second (920b) surfaces, a planar pad of a size matching the leadframe pad size, and contours (922), into which the leadframe members are inserted so that the first spreader pad surface touches the second leadframe pad surface across the pad size. A semiconductor chip (904) is mounted on the first leadframe pad surface. Encapsulation material (930), preferably molding compound, covers the chip, but leaves the second spreader surface uncovered.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: December 22, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Bernhard P. Lange, Steven A. Kummerl
  • Patent number: 7635914
    Abstract: In a method and system for fabricating a semiconductor device (100) having a package-on-package structure, a base laminate substrate (BLS) (110) is formed to include a base center portion (112) and a peripheral portion (114) separated by a barrier element (120). The barrier element (120) forms a peripheral wall (118) to surround the base center portion (112). A frame shaped top laminate substrate (TLS) (130) is disposed over the peripheral portion (114) of the BLS (110). The TLS (130) has an open top center portion (132) matching the base center portion (112) surrounded by the peripheral wall (118) to form a cavity (140). A plurality of conductive bumps (150) each disposed between a top contact pad (134) of the TLS and a base contact pad (116) of the peripheral portion (114) of the BLS (110) are formed to provide electrical and mechanical coupling therebetween. The barrier element (120) forms a seal between the cavity (140) and the plurality of conductive bumps (150).
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: December 22, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Prema Palaniappan, Masood Murtuza, Satyendra Singh Chauhan
  • Patent number: 7629696
    Abstract: A device with a semiconductor chip assembled on a planar substrate and encapsulation compound surrounding the assembled chip and a portion of the substrate near the chip; the compound has a planar top area. The encapsulation compound has a plurality of side areas reaching from the substrate to the top area; these side areas form edge lines with the top area, where the top area plane intersects with the respective plane of each side area. The encapsulation compound is recessed along the edge lines so that the material is caved-in along the lines; this feature causes the recess to prevent any compound from the side area planes to reach the top area plane, whereby the planarity of the top area is preserved.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: December 8, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Yoshimi Takahashi
  • Patent number: 7626274
    Abstract: A semiconductor device with an improved solder joint system is described. The solder system includes two copper contact pads connected by a body of solder and the solder is an alloy including tin, silver, and at least one metal from the transition groups IIIA, IVA, VA, VIA, VIIA, and VIIIA of the Periodic Table of the Elements. The solder joint system also includes, between the pads and the solder, layers of intermetallic compounds, which include grains of copper and tin compounds and copper, silver, and tin compounds. The compounds contain the transition metals. The inclusion of the transition metals in the compound grains reduce the compound grains size and prevent grain size increases after the solder joint undergoes repeated solid/liquid/solid cycles.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: December 1, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Masazumi Amagai
  • Patent number: 7612437
    Abstract: In a method and system for fabricating a thermally enhanced semiconductor device (200, 300) is packaged as a through hole single inline package (SIP). A leadframe (210, 310, 410) having a die pad (220, 320, 420) to attach an IC die (230, 330), a first plurality of conductive leads (240, 340, 430) formed from a first portion of metal sheet (432), and a second portion of metal sheet (440) disposed on an opposite side of the IC die (230, 330) as the first plurality of conductive leads is stamped from a metal sheet. The first plurality of conductive leads (240, 340, 430) are arranged in a single line and are capable of being through hole mounted in accordance with the SIP. The second portion of metal sheet (440) includes the die pad (420) to form a heat spreader (260, 360) in the form of the metal sheet. The heat spreader (260, 360) provides heat dissipating for the heat generated by the IC die (230, 330).
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: November 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Chris Edward Haga, Anthony Louis Coyle, William David Boyd
  • Patent number: 7608484
    Abstract: Disclosed herein is a method of manufacturing a semiconductor package with a solder standoff on lead pads that reach to the edge of the package (non-pullback leads). It includes encapsulating a plurality of die on a lead frame strip. The lead frame strip comprises a plurality of package sites, which further comprises a plurality of lead pads and a die pad. The method also includes forming a channel between the lead pads of nearby package sites without singulating the packages. Another step in the method includes disposing solder on the lead pads, the die pad, or the lead pads and the die pads without substantially covering the channel with solder. The manufacturing method further includes singulating the packages.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: October 27, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Bernhard P. Lange, Anthony L. Coyle, Jeffrey Gail Holloway
  • Patent number: 7608916
    Abstract: A post-mold plated semiconductor device has an aluminum leadframe (105) with a structure including a chip mount pad and a plurality of lead segments without cantilevered lead portions. A semiconductor chip (210) is attached to the chip mount pad, and conductive connections (212) span from the chip to the aluminum of the lead segments. Polymeric encapsulation material (220), such as a molding compound, covers the chip, the connections, and portions of the aluminum lead segments without leaving cantilevered segment portions. Preferably by electroless plating, a zinc layer (301) and a nickel layer (302) are on those portions of the lead segments, which are not covered by the encapsulation material including the aluminum segment surfaces (at 203b) formed by the device singulation step, and a layer (303) of noble metal, preferably palladium, is on the nickel layer.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: October 27, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Donald C. Abbott
  • Patent number: 7598119
    Abstract: System and method for preventing resin-based adhesive from contacting a substrate to minimize resin bleed-out and contamination. A preferred embodiment comprises a semiconductor device having a die mounted on a substrate, first and second gold surfaces formed on the substrate, a trench formed between the first and second gold surfaces, resin-based adhesive applied to the first gold surface, and a heat sink bonded to the resin-based adhesive.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 6, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Sergio V. Martinez, Boon Hor Lee, Karen Lynne Robinson
  • Patent number: 7598547
    Abstract: We disclose the structure of a JFET device, the method of making the device and the operation of the device. The device is built near the top of a substrate. It has a buried layer that is electrically communicable to a drain terminal. It has a channel region over the buried layer contacting gate regions that connect to a gate terminal. The channel region, of which the length spans the distance between the buried layer and a source region, is connected to a source terminal. The device current flows in the channel substantially perpendicularly to the top surface of the substrate.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: October 6, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P Pendharker, Pinghai Hao, Xiaoju Wu
  • Patent number: 7598759
    Abstract: Embodiments of the present disclosure provide a routing engine, a method of routing a test probe and a testing system employing the router or the method. In one embodiment, the routing engine is for use with a test unit having at least one test probe and includes an analysis unit configured to analyze alternative test probe routing sequences that employ representative circuit chips of a semiconductor wafer to be tested by the test unit. The routing engine also includes a selection unit configured to select at least one of the test probe routing sequences as a test probe path for testing the semiconductor wafer based on a total cost of travel for the test probe path.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: October 6, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Rex W. Pirkle, Sean M. Malolepszy, Michael W. Perry, George Reeves
  • Patent number: 7598124
    Abstract: In accordance with the present invention, a system and method to increase die stand-off height in a flip chip are provided. The system includes a plurality of separator pedestals disposed between a first face of a die and a second face of a substrate, the substrate positioned generally parallel with, and spaced apart from, the die, and the first face being opposite the second face. The plurality of separator pedestals are operable to selectively force the die and substrate apart, increasing the stand-off height of the flip chip assembly.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 6, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Charles Anthony Odegard
  • Patent number: 7587642
    Abstract: The present application describes a system and method for testing semiconductor devices and specifically for testing mixed signal semiconductor devices. The test systems are configured to test the semiconductor devices using overlapping test setups by configuring various test system elements. The various test system elements are programmed and prepared for subsequent tests concurrently with tests executing on the semiconductor devices. The test results are computed by various software computation modules configured to independently execute in parallel with the subsequent tests. The resultant test data of an executed test is shared among the various concurrently executing software computation modules using shared information storage. A tester user interface, executing on test system, provides an interface between user test scripts and software computation modules.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: September 8, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Dennis Harold Burke, Jr., Mark Allen Erickson, Kevin Dale Bittick
  • Patent number: 7582963
    Abstract: According to one embodiment of the invention, a method of forming a system-in-a-package includes providing a first substrate, coupling a first die to a top surface of the first substrate, coupling one or more surface mount devices to a top surface of a second substrate, coupling the second substrate to a top surface of the first die, interconnecting the first substrate, the second substrate, and the first die, and encapsulating the first die, the second substrate and the surface mount devices.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: September 1, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Mark A. Gerber, Wyatt Huddleston