Abstract: The invention is directed to an electropolishing solution for products or devices made from at least in part a cobalt-chromium alloy. The invention is particularly suitable for medical devices or intravascular stents made at least in part of cobalt-chromium. More particularly, the electropolishing process of the invention is particularly suited for use on implantable medical devices, such as stents, due to the biocompatibility of cobalt-chromium alloys. The invention is directed to an improved stent formed from a cobalt-chromium alloy, that possesses an ultrasmooth shiny surface. This invention is also directed to a method of electropolishing such a stent using an acidic electrolytic solution comprising a mixture of 6 parts of about 98% sulfuric acid (H2SO4), 1 part of about 37% hydrochloric acid (HCl) and 1 part by of about 85% concentrated phosphoric acid (H3PO4) to produce an exceptionally smooth surface.
Abstract: A polymer blend that contains a polymer of fluorinated monomers and another biocompatible polymer. The polymer blend can form a coating on a medical device. The medical device can be used for treat, prevent or ameliorate a medical condition.
Abstract: An intracorporeal catheter, such as a guiding catheter, employed for intraluminal procedures is disclosed. The catheter generally has an elongated catheter shaft including a polymeric inner layer and a non-radiopaque outer polymeric layer, along with a radiopaque reinforcing structure disposed between the inner and outer layers. In one embodiment, the reinforcing layer consists of multiple drawn filled tubes braided or wound together. The drawn filled tubes may have a stainless steel outer jacket clad over a radiopaque inner core, or the drawn filled tubes may have a radiopaque outer jacket clad over a stainless steel core. In another embodiment, the reinforcing layer may consist of multiple wires containing radiopaque alloys braided or wound together, wherein at least two of the wires consist of different radiopaque alloys. The strands of the reinforcing structure may have a circular or a rectangular transverse cross-sectional shape.
Type:
Grant
Filed:
March 11, 2003
Date of Patent:
April 8, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Brandon Gosiengfiao, Jonathan M. Howland
Abstract: The invention is generally directed to an intraluminal catheter with an improved transition between a proximal shaft portion and a more flexible distal shaft portion and a method for making the same. The improvement provides enhanced flexibility, reduced bunching, and kink-resistance, thus, facilitating advancement through tortuous anatomy. The present catheters may be used for either or both angioplasty and stent deployment.
Abstract: A catheter having a mandrel secured to the catheter or constrained within a dedicated lumen. In one embodiment, the catheter has an inner tubular member and an outer tubular member with a sidewall configured to define a mandrel lumen longitudinally along an inner surface of the outer tubular member or along an outer surface of the inner tubular member. The mandrel lumen may be configured to allow the mandrel to be exchanged to adjust the handling characteristics of the catheter. The mandrel may occupy an intermediate portion of the catheter shaft, or may extend from the proximal end to within proximal or distal shaft sections of the catheter. In coronary artery applications, the mandrel is configured to support the catheter as it bends through the aortic arch and enters the coronary artery.
Type:
Grant
Filed:
October 22, 2003
Date of Patent:
April 1, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Jeong Soo Lee, Tim Geiser, Sandra K. Schenk, Terry Freeman, Cheri Stiger, Fozan El-Nounou
Abstract: A self-expanding cage for use in conjunction with an embolic filtering device includes a circumferential member adapted to expand from an unexpanded position to a expanded position within the patient's body vessel. A proximal strut and distal strut are attached to the circumferential member to form the cage. A plurality of proximal and distal struts may be attached the circumferential member. Additionally, a second circumferential member can be attached to the first circumferential member. Each circumferential member can be connected by a single or a plurality of connecting struts. One embodiment of the cage utilizes a single wire to form to the cage. A delivery system attached to the single wire cage moves the cage and its associated filter element between the expanded and unexpanded positions through relative movement of the distal delivery system.
Type:
Grant
Filed:
January 31, 2002
Date of Patent:
March 18, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
William J. Boyle, William J. Harrison, Benjamin C. Huter, Scott J. Huter, Paul F. Muller, John E. Papp
Abstract: A catheter having a distal tip with an inner layer formed of a polymeric material having a coefficient of friction and surface energy which are relatively low, such that the inner layer has a lubricious, non-polar inner surface repulsive to polar liquids. As a result, blood coagulation in the distal tip, and adherence of the distal tip on the guidewire are prevented or minimized.
Type:
Grant
Filed:
September 2, 2004
Date of Patent:
March 11, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Mark E. Harris, Vincent P. Bavaro, Kenneth Wantink
Abstract: A strut assembly to be used in conjunction with an embolic filtering device has varying strut thicknesses, with the thickness selected based at least in part on the flexing characteristics of the particular portion of the strut assembly. The strut assembly is formed with patterns having flexing portions and stable portions, with the flexing portions contributing to the flexibility of the strut assembly during delivery and recovery in the patient's vasculature. The stable portions remain relatively unflexed and stiff when being delivered or recovered from the patient's vasculature. The stable portions provide strength and increased radiopacity to the strut assembly which is needed when the strut assembly is deployed in the body vessel. The flexing portions act much like a mechanical hinges in providing the needed flexibility to resiliently bend when being delivered through tortuous anatomy of the patient.
Type:
Grant
Filed:
June 29, 2001
Date of Patent:
March 4, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
John F. Boylan, Orlando M. Padilla, Christopher J. Tarapata
Abstract: A method of forming a coating for an implantable medical device, such as a stent, is provided which includes applying a composition to the device in an environment having a selected pressure.
Abstract: An apparatus for coating implantable medical devices, such as stents, is disclosed. A method of coating stents using the apparatus is also disclosed. The apparatus includes a barrier or barriers for isolating an area of the stent on which a composition for coating a stent is applied.
Abstract: An implantable medical device, such as a stent or graft, having asperities on a designated region of its outer surface is disclosed. The asperities can serve to improve retention of one or more layers of a coating on the device and to increase the amount of coating that can be carried by the device. The asperities can be formed by using a stream of pressurized grit to roughen the surface. The asperities can also be formed by removing material from the outer surface, for example, by chemical etching with or without a patterned mask. Alternatively, the asperities can be formed by adding material to the outer surface, for example, by welding powder particles to the outer surface or sputtering.
Type:
Grant
Filed:
August 4, 2004
Date of Patent:
February 26, 2008
Assignee:
Advanced Cardiovascular Systems Inc.
Inventors:
Steven Z. Wu, Sameer Harish, Deborra Sanders-Millare, Judy A. Guruwaiya, Daryush Mirzaee, Syed Hossainy, Charlene Chen
Abstract: An expandable stent is implanted in a body lumen, such as a coronary artery, peripheral artery, or other body lumen for treating an area of vulnerable plaque. The invention provides for an intravascular stent having a plurality of cylindrical rings connected by straight links. Alternatively, the cylindrical rings of the distal section and the cylindrical rings of the proximal section are connected directly to adjacent cylindrical rings. The stent has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. A central section is positioned between distal and proximal sections and is aligned with the area of vulnerable plaque to enhance growth of cells over the fibrous cap of the vulnerable plaque to reinforce the area and reduce the likelihood of rupture.
Abstract: The present invention is directed to balloon catheter having a compression member securing one or more balloon skirts to the catheter shaft. The compression member may be a band or coil that sealing secures the balloon skirt to a catheter shaft. Metallic compression members may be swaged to compress the skirt against the shaft, and thus provide a uniform seal between the balloon skirt and the catheter shaft. The compression members are especially useful when the balloon is formed of a fluoropolymer, such as expanded polytetrafluoroethylene (ePTFE) or polyterafluoroethylene (PTFE).
Type:
Grant
Filed:
December 31, 2002
Date of Patent:
February 19, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Christopher L. Steadham, Christopher C. Pfaff, Brett W. Cryer
Abstract: Coatings for implantable medical devices, and methods for fabricating thereof, are provided. The coatings include a first polymer layer and a second polymer layer, where the second polymer has a higher degree of hydration than the first polymer.
Type:
Grant
Filed:
November 6, 2003
Date of Patent:
February 12, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Stephen D. Pacetti, Syed F. A. Hossainy, Yiwen Tang, Andrew C. Tung, Thierry Glauser
Abstract: The present invention relates to a method of polishing an implantable medical device. The method may include positioning an implantable medical device on a support. At least a portion of a surface of the implantable medical device may include a polymer. A fluid may be contacted with at least a portion of the surface of the positioned implantable medical device. In an embodiment, the fluid may be capable of dissolving at least a portion of the polymer at or near the surface of the implantable medical device. The method may further include allowing the fluid to modify at least a portion of the surface of the positioned medical device. A majority of the contacted fluid may be removed from the surface of the implantable medical device. In certain embodiments, the modified portion of the surface may be substantially less thrombogenetic and substantially more mechanically stable than an unmodified surface.
Abstract: An apparatus and method is provided for forming coatings on stents. The apparatus includes a temperature adjusting element that can increase or decrease the temperature of the stent. The apparatus can support a stent during the application of a coating composition to the stent. The apparatus can include a mandrel to support a stent and a temperature element integrated with the mandrel to adjust the temperature of the mandrel. The temperature element can include a heating coil or a heating pin, for example, disposed in the mandrel.
Type:
Grant
Filed:
May 15, 2003
Date of Patent:
January 29, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Thomas D. Esbeck, Andrew McNiven, Boyd Knott, Todd Thessen, Kara Carter, Joycelyn Amick
Abstract: A patterned coating on a prosthesis, for example a stent, and a method for forming the coating are disclosed. Additionally, an apparatus for forming the patterned coating is disclosed.
Type:
Grant
Filed:
June 23, 2003
Date of Patent:
January 29, 2008
Assignee:
Advanced Cardiovascular Systems, Inc.
Inventors:
Daniel Castro, Steven Wu, Kevin L. Woolbright, Kurt W. Scheinpflug, Syed F. A. Hossainy, Li Chen