Patents Assigned to Advanced Energy Industries, Inc.
  • Patent number: 9124248
    Abstract: This disclosure describes systems, methods, and apparatuses for impedance-matching radio frequency power transmitted from a radio frequency generator to a plasma load in a semiconductor processing chamber. Impedance-matching can be performed via a match network having a variable-reactance circuit. The variable-reactance circuit can comprise one or more reactive elements all connected to a first terminal and selectively shorted to a second terminal via a switch. The switch can comprise a bipolar junction transistor (BJT) or insulated gate bipolar transistor (IGBT) controlled via bias circuitry. In an on-state, the BJT base-emitter junction is forward biased, and AC is conducted between a collector terminal and a base terminal. Thus, AC passes through the BJT primarily from collector to base rather than from collector to emitter. Furthermore, the classic match network topology used with vacuum variable capacitors can be modified such that voltages do not overload the BJT's in the modified topology.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 1, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Gideon J. Van Zyl, Gennady G. Gurov
  • Patent number: 9105447
    Abstract: This disclosure describes systems, methods, and apparatus for operating a plasma processing chamber. In particular, a periodic voltage function combined with an ion current compensation can be provided as a bias to a substrate support as a modified periodic voltage function. This in turn effects a DC bias on the surface of the substrate that controls an ion energy of ions incident on a surface of the substrate. A peak-to-peak voltage of the periodic voltage function can control the ion energy, while the ion current compensation can control a width of an ion energy distribution function of the ions. Measuring the modified periodic voltage function can provide a means to calculate an ion current in the plasma and a sheath capacitance of the plasma sheath. The ion energy distribution function can be tailored and multiple ion energy peaks can be generated, both via control of the modified periodic voltage function.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: August 11, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Victor Brouk, Daniel J. Hoffman, Daniel Carter, Dmitri Kovalevskii
  • Patent number: 9088267
    Abstract: The present disclosure discusses a power delivery system, and methods of operation, configured to monitor characteristics of a generator, a match network, and a plasma load, via one or more sensors, and control these components via a local controller in order to improve power delivery accuracy and consistency to the plasma load. Control can be based on a unified monitoring of power characteristics in the power delivery system as well as variations between components and even non-electrical characteristics such as plasma density, end point, and spectral components of plasma light emission, to name a few.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 21, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Thomas Joel Blackburn, Thomas McIntyre, Fernando Gustavo Tomasel
  • Patent number: 9065426
    Abstract: In accordance with this invention the above and other problems are solved by a switching apparatus and method that uses a switching circuit having a pair of parallel solid-state diodes (e.g., PN or PIN diodes), one of which is connected to a transistor (e.g., power MOSFET or IGBT), to switch a capacitor (or reactance element) in or out of a variable capacitance element (or variable reactance element) of an impedance matching network. Charging a body capacitance of the transistor reverse biases one of the two diodes so as to isolate the transistor from the RF signal enabling a low-cost high capacitance transistor to be used. Multiple such switching circuits and capacitors (or reactance elements) are connected in parallel to provide variable impedance for the purpose of impedance matching.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 23, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventor: Christopher C. Mason
  • Patent number: 9042121
    Abstract: Among many embodiments, a power conversion apparatus and a method for converting power are disclosed. The power conversion apparatus may include switching components configured to create an alternating current; a preemptive detector arranged and configured to provide, in advance of the alternating current reaching a zero-crossing, a control signal responsive to the alternating electrical current approaching the zero-crossing; and a controller configured, at least in part, to change a state of the switching components before the zero crossing, in response to the control signal.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: May 26, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Hendrik Walde, Daryl Frost
  • Patent number: 9039871
    Abstract: Methods and apparatus for applying pulsed DC power to a plasma processing chamber are disclosed. In some implementations, frequency of the applied power is varied to achieve desired processing effects such as deposition rate, arc rate, and film characteristics. In addition, a method and apparatus are disclosed that utilize a relatively high potential during a reverse-potential portion of a particular cycle to mitigate possible nodule formation on the target. The relative durations of the reverse-potential portion, a sputtering portion, and a recovery portion of the cycle are adjustable to effectuate desired processing effects.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 26, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Kenneth E. Nauman, Kenneth Finley, Skip B. Larson, Doug Pelleymounter
  • Patent number: 8907615
    Abstract: An electrical power generation system, such as a solar power inverter, can provide dynamic real-time power compensation, so as to mitigate the effects of voltage sags and swells (e.g., on a utility grid) and thereby provide voltage support functionality to a local grid. The electrical power generation system can do so by receiving first synchrophasor measurements that are taken at a point on the utility grid and transmitted to the electrical power generation system and by taking second synchrophasor measurements. The first and second synchrophasors indicate voltage magnitude and frequency of the alternating current (AC) at their respective measurement points. The electrical power generation system can compare the first synchrophasors with the second synchrophasors and based upon the comparison, vary the power factor of the power the electrical power generation system generates (e.g., by either supplying or absorbing reactive power).
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: December 9, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Michael A. Mills-Price, Michael Ropp
  • Patent number: 8884525
    Abstract: Disclosed herein are systems, methods and apparatuses for dissociating a non-activated gas through a disc-shaped plasma in a remote plasma source. Two inductive elements, one on either side of the disc-shaped plasma, generate a magnetic field that induces electric fields that sustain the disc-shaped plasma. The inductive elements can be coiled conductors having any number of loops and can be arranged in planar or vertical coils or a combination of planar and vertical coils. Additionally, the ratio of inductive element radius to gap distance between the two inductive elements can be configured to achieve a desired vertical plasma confinement.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 11, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Daniel J. Hoffman, Daniel Carter, Randy Grilley, Karen Peterson
  • Patent number: 8884180
    Abstract: A system and method for managing power delivered to a processing chamber is described. In one embodiment current is drawn away from the plasma processing chamber while initiating an application of power to the plasma processing chamber during an initial period of time, the amount of current being drawn away decreasing during the initial period of time so as to increase the amount of power applied to the plasma processing chamber during the initial period of time.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: November 11, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventor: Milan Ilic
  • Patent number: 8847561
    Abstract: An apparatus, system and method are described that enable an impedance of a plasma load to be matched with a power generator. In some embodiments the apparatus includes a power output adapted to apply power that is utilized to energize a plasma; a sensor adapted to sample power applied at the power output so as to obtain power samples; and an impedance control output configured to provide, responsive to the power samples, an impedance-control signal that enables an impedance matching network connected to the output of the power generator and to the impedance control output to match, responsive to the an impedance-control signal, the impedance of the plasma to the operating impedance of the power generator.
    Type: Grant
    Filed: December 14, 2008
    Date of Patent: September 30, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Tom Karlicek, Gideon J. van Zyl, Lane Sanford
  • Publication number: 20140265590
    Abstract: Methods and devices for pre-regulating power are disclosed herein. The method may include sectioning at least a portion of a photovoltaic array into two array subsections and applying power from the two array subsections to a power conversion component. A voltage that is applied by each of the two subsections varies with environmental conditions affecting the two array sections. A connection between the two array subsections is alternated from a series arrangement and a parallel arrangement to regulate a voltage level of the power that is applied by both of the two subsections to the power conversion component.
    Type: Application
    Filed: March 15, 2014
    Publication date: September 18, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventor: Eric Seymour
  • Publication number: 20140247630
    Abstract: Power converter systems with high accuracy signal generation and associated methods are disclosed herein. In one embodiment, a method for controlling an inverter coupled to a grid includes receiving data representing a voltage signal of the grid, analyzing the received data in frequency domain, and extracting a fundamental frequency component from the analyzed data in frequency domain. The method can also include calculating a waveform based on the fundamental frequency component and controlling an output of the inverter based on the calculated waveform.
    Type: Application
    Filed: September 26, 2013
    Publication date: September 4, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventor: Mesa P. Scharf
  • Publication number: 20140239813
    Abstract: This disclosure describes systems, methods, and apparatus for ensuring desirable ignition of plasma in a plasma processing chamber via providing increased instantaneous power during an ignition period for both continuous wave (CW) and pulsed power delivery. The systems, methods, and apparatus can be applied to both initial ignition of a plasma and reignition of a plasma where pulsed power delivery leads to periodic extinction of the plasma.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventors: Gideon Van Zyl, David W. Madsen, Fernando Gustavo Tomasel
  • Patent number: 8815329
    Abstract: An apparatus and method for controlling an application of power to power a plasma chamber. A detector detects actual power out from the power stage to the plasma chamber during a sampling interval. A compare module compares the actual power out during the sampling interval to a present power setting during the sampling interval and generates a compensation value. An adjust module updates the present power setting for the power stage with the compensation value to provide a new power setting for the power stage to control the power out from power stage to the plasma chamber during the deposition process whereby power losses occurring during the deposition process are compensated during the deposition process. If there is a fixed time period for the deposition process, the compensation method and apparatus may be used to compensate the deposition process for energy losses without extending the duration of the deposition process.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: August 26, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Milan Ilic, Darren File
  • Publication number: 20140231243
    Abstract: This disclosure describes a non-dissipative snubber circuit configured to boost a voltage applied to a load after the load's impedance rises rapidly. The voltage boost can thereby cause more rapid current ramping after a decrease in power delivery to the load which results from the load impedance rise. In particular, the snubber can comprise a combination of a unidirectional switch, a voltage multiplier, and a current limiter. In some cases, these components can be a diode, voltage doubler, and an inductor, respectively.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 21, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventor: Kenneth W. Finley
  • Publication number: 20140232266
    Abstract: This disclosure describes a non-dissipative snubber circuit configured to boost a voltage applied to a load after the load's impedance rises rapidly. The voltage boost can thereby cause more rapid current ramping after a decrease in power delivery to the load which results from the load impedance rise. In particular, the snubber can comprise a combination of a unidirectional switch, a voltage multiplier, and a current limiter. In some cases, these components can be a diode, voltage doubler, and an inductor, respectively.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 21, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventors: Kenneth W. Finley, Hendrik Walde
  • Publication number: 20140210551
    Abstract: A method and generator for modifying interactions between a load and the generator are described. The method includes applying output power to the load using a power amplifier, controlling a level of the output power responsive to a power control setting, and adjusting a conduction angle of the power amplifier to reduce a level of sensitivity of the power amplifier to variations of an impedance of the load. The generator includes a compensation subsystem coupled to the power amplifier that controls a conduction angle of the power amplifier to enable a sensitivity of the power amplifier to be adjusted.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventor: Michael Mueller
  • Publication number: 20140210345
    Abstract: This disclosure describes systems, methods, and apparatus for capacitively coupling energy into a plasma to ignite and sustain the plasma within a remote plasma source. The power is provided by a first electrode that at least partially surrounds or is surrounded by a second electrode. The second electrode can be grounded or floating. First and second dielectric components can be arranged to separate one or both of the electrodes from the plasma and thereby DC isolate the plasma from one or both of the electrodes.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: Advanced Energy Industries, Inc
    Inventor: Daniel J. Hoffman
  • Publication number: 20140155008
    Abstract: A generator and method for tuning the generator are disclosed. The method includes setting the frequency of power applied by the generator to a current best frequency and sensing a characteristic of the power applied by the generator. A current best error based upon the characteristic of the power is determined, and the frequency of the power at the current best frequency is maintained for a main-time-period. The frequency of the power is then changed to a probe frequency and maintained at the probe frequency for a probe-time-period, which is less than the main-time-period. The current best frequency is set to the probe frequency if the error at the probe frequency is less than the error at the current best frequency.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 5, 2014
    Applicant: Advanced Energy Industries, Inc.
    Inventor: Gideon Van Zyl
  • Patent number: 8742939
    Abstract: This disclosure describes systems, methods, and apparatus for rapidly detecting smoke or other particles or aerosols generated in any one or more compartments of a multi-compartment electronics enclosure. The herein disclosed system includes a particle sensor and an airflow controller that pulls air and particles from the one or more compartments through fluid pathways and into the particle sensor.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: June 3, 2014
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Scott Polak, Jeffrey Roberg, Michael Mueller