Patents Assigned to Advanced Neuromodulation Systems, Inc.
  • Patent number: 11478645
    Abstract: This application is generally related to systems and methods for providing a medical therapy to a patient by tracking patient activity and adjusting medical therapy based on occurrence of different types of activities performed by the patient while automatically balancing stimulation program duration.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: October 25, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Christopher S. L. Crawford
  • Patent number: 11464981
    Abstract: The present disclosure provides systems and methods for an output architecture for an implantable pulse generator of a neurostimulation system. The output architecture includes a power supply, a plurality of outputs, a global source current regulator coupled to the power supply and operable to source current from the power supply to the plurality of outputs through a plurality of source current branches, a global sink current regulator operable to sink current from the plurality of outputs to ground through a plurality of sink current branches, a current source branch selector operable to select, for each of the plurality of outputs, an amount of current sourced from the plurality of source current branches, and a current sink branch selector operable to select, for each of the plurality of outputs, an amount of current sunk to the plurality of sink current branches.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: October 11, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Gavin L. Rade
  • Patent number: 11406470
    Abstract: A trajectory guiding apparatus and one or more methods associated therewith for facilitating precision-guided alignment and implantation of a DBS therapy device in a patient. A base plate and base frame combination provides a platform for a dual-stage slider (DSS) assembly comprising a bottom stage slider (BSS) table and a top stage slider (TSS) table that each have suitably sized apertures or orifices therethrough for allowing the passage of and securely holding an instrumentation column (IC) assembly whose translational movement (i.e., sideways or forward and/or backward directions along a translational plane) and pivotal/rotational movement (i.e., around a perpendicular axis orthogonal to the translational plane and extending through a pivot or fulcrum) are independently controlled by respective slide actuators in order to properly align the IC assembly to a desired trajectory.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: August 9, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Robert E. Jones, Galen L. Smith
  • Patent number: 11397802
    Abstract: The present disclosure provides systems and methods for authenticating a user to reset account login credentials associated with a non-network-connected generator computing device. The generator computing device is programmed to receive a first user input requesting to initiate a reset of account login credentials, generate a challenge code, set a timer, display the generated challenge code, and receive a second user input. The second user input is a response code generated at a services computing device associated with a services provider. The generator computing device is also programmed to verify that an amount of time elapsed between generation of the challenge code and receipt of the second user input is within a predefined time limit. The generator computing device is programmed to generate an expected response code, authenticate the user by comparing the received response code to the expected response code, and reset the account login credentials.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 26, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Evan D. Howarth, Gregory Creek, Mai H. Nguyen
  • Patent number: 11364386
    Abstract: A system, method and a network architecture for facilitating remote care therapy via secure communication channels between clinicians and patients having one or more IMDs, wherein certain unique information retrieved from an IMD is used in association with an encryption key infrastructure system for establishing trusted relationships between a clinician device, a patient's device and the patient's IMD. A cloud-based remote care session manager is provided for registering and validating the clinician and patent devices based on the IMD data used as trust indicia. In one embodiment, trusted associations between the devices are only established when the devices in close proximity of each other, e.g., in an in-person setting.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: June 21, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Germinal Ibarrola, Scott DeBates
  • Patent number: 11364086
    Abstract: A trajectory guiding apparatus and one or more methods associated therewith for facilitating precision-guided alignment and implantation of a DBS therapy device in a patient. Orthogonally disposed first and second arcuate racks are independently actuatable by respective pinion drives, wherein the first arcuate rack is coupled to a base support and the second arcuate rack is operative to support a slider assembly arranged to accommodate an instrumentation column (IC) containing the therapy device. The first pinion drive is actuatable to cause a first curvilinear motion of the second arcuate rack including the slider assembly, the first curvilinear motion defined along a first arcuate path on a first perpendicular plane.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: June 21, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Robert E. Jones, Galen L. Smith
  • Patent number: 11351376
    Abstract: A system and method for extracting ETI load parametric data relative to one or more electrodes of an implanted stimulation lead system associated with an IPG. A Kelvin connection scheme is provided for measuring induced voltages present at stimulated electrodes during a stimulation ramping sequence, which may be used for determining the ETI parametric data using a number of techniques, including, without limitation, a waveform analysis.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: June 7, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor
  • Patent number: 11298204
    Abstract: A trajectory guiding apparatus and one or more methods associated therewith for facilitating precision-guided alignment and implantation of a DBS therapy device in a patient. A pivotally rotatable stage is pivotally coupled to a base support and a vertical support operative to support a slider assembly arranged to accommodate an instrumentation column (IC) containing the therapy device. A first gimbal drive is disposed between the pivotally rotatable stage and the base support, wherein the first gimbal drive is actuatable to cause a first pivotal motion of the slider assembly including the IC, the first pivotal motion defined along a first arcuate path pivoted around a first pivotal axis.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: April 12, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Robert E. Jones, Galen L. Smith
  • Patent number: 11253706
    Abstract: The present disclosure provides systems and methods for selecting contacts for use in deep brain stimulation (DBS). A computing device includes a processor and a memory device communicatively coupled to the processor. The memory device includes instructions that, when executed, cause the processor to apply a spatial filter to local field potential (LFP) recordings for a plurality of contacts of a DBS lead, calculate a power spectral density (PSD) for each contact from the filtered LFP for that contact, calculate a parametric approximation for each PSD, select at least one frequency band based on the parametric approximations, calculate a spectral coherency matrix for each of the at least one selected frequency band, and calculate an eigenvector centrality for each spectral coherency matrix to facilitate identifying a contact for stimulation.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: February 22, 2022
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Hyun-Joo Park
  • Patent number: 11173311
    Abstract: In one embodiment, a method of programming an implantable medical device (IMD) to provide therapeutic operations for a patient, comprises: conducting a first communication session between the IMD with an external programming device when network connectivity for a remote server for medical device management is not available for the external programming device; receiving programming data by the IMD from the external programming device to provide therapeutic operations according to at least one instance of settings data during the first communication session, wherein the at least one instance of settings data is validated by a temporary key; conducting a second communication session between the IMD with an external device when network connectivity to the remote server for medical device management is available for the external device; and replacing validation data signed using the temporary key with the received validation data.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 16, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Christopher S. L. Crawford
  • Patent number: 11173313
    Abstract: In one embodiment, a method of programming an implantable medical device (IMD) to provide therapeutic operations for a patient, comprises: receiving first programming data by the IMD from the external programming device to provide therapeutic operations according to at least one instance of settings data during a first communication session; receiving second programming data by the IMD from the external programming device to define limitations of reprogramming during one or more subsequent offline programming sessions; conducting a second communication session between the IMD with an external programming device when network connectivity is not available; receiving third programming data by IMD from the external programming device to provide therapeutic operations according to at least one instance of settings data during the second communication session; and determining whether the third programming data is permitted according to limitations defined by the second programming data.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 16, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Christopher S. L. Crawford
  • Publication number: 20210339016
    Abstract: In one embodiment, a system for stimulating the dorsal root ganglion of a patient comprises an elongate flexible implantable stimulation lead adapted to apply the stimulation pulses to the dorsal root ganglion of the patient, wherein the distal end comprises at least one electrode. A first segment and a second segment of the anchor are configured to transition between a collapsed configuration and deployed configuration. A central channel in the first segment and the second segment allows the anchor to be advanced along the stimulation lead from a proximal end toward the distal end while in the collapsed configuration. The central channel of each segment grips onto the stimulation lead in the deployed configuration so that the segment does not move from a deployed position on the stimulation lead. The first segment and the second segment may be deployed on opposite sides of foraminal ligament to anchor the stimulation lead.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 4, 2021
    Applicant: Advanced Neuromodulation Systems, Inc.
    Inventor: Matthew K. Dion
  • Patent number: 11160984
    Abstract: In one embodiment, an implantable pulse generator (IPG) for providing a neurostimulation therapy, comprises: pulse generation circuitry and pulse delivery circuitry for controlling generation and delivery of electrical pulses to a patient using one or more electrodes of a stimulation lead; measurement circuitry for determining characteristics of one or more electrodes selected for delivery of electrical pulses; and a processor for controlling the IPG according to executable code; wherein the IPG is adapted to calculate values for an impedance model of the one or more selected electrodes using the determined plurality of voltage measurements and to adjust current levels for the exponentially decreasing current pattern based on the calculated values for the impedance mode.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 2, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Vidhi Desai
  • Patent number: 11154714
    Abstract: An implantable medical device (IMD) includes an adjustable capacitive voltage multiplier (CVM) that is responsive to diagnostic circuitry configured to provide control signals within a single stimulation current pulse for adjusting the voltage output applied to an electrode of the IMD's lead system. A control counter is coupled to the diagnostic circuitry for incrementing or decrementing an N-bit counter output signal operative to reconfigure a charge pump arrangement of the CVM so as to facilitate an adjusted voltage output.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: October 26, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Gavin L. Rade
  • Patent number: 11135431
    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 5, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor
  • Patent number: 11135434
    Abstract: The present disclosure provides systems and methods for protection circuitry for an implantable pulse generator (IPG) of a neurostimulation system. The protection circuitry is coupled to an IPG ground, a plurality of electrodes, and an IPG case, and operable to protect IPG stimulation and sensing circuitry from damage during electrostatic discharge and cardiac defibrillation, and to mitigate unintended stimulation during electromagnetic interference. The protection circuitry includes an IPG ground connection, a plurality of protection Zener diodes, wherein one of the protection Zener diodes is electrically coupled between the IPG case and a float Zener diode, and wherein the remaining protection Zener diodes are electrically coupled between the plurality of electrodes and the float Zener diode, and the float Zener diode electrically coupled between the plurality of protection Zener diodes and the IPG ground.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 5, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Steven Boor
  • Patent number: 11133113
    Abstract: A system and method for facilitating remote care management involving a patient having an implantable medical device (IMD). Upon establishing a remote care session between a patient controller device and a clinician programmer, wherein the clinician and the patient are remotely located with respect to each other, input from the patient or the clinician may be received via a user interface control associated with a particular functionality or aspect of the remote care session, including audiovisual (AV) communications, remote therapy programming, and related context. Responsive to the user input, a dialog interface is effectuated at one of the patient controller device and/or the clinician programmer. A user characterization label is received via the dialog interface from the user, wherein the user characterization label is indicative of a subjective assessment of the particular functionality of the remote care session, which may be used in generating user-labeled data pertaining thereto.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 28, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Scott DeBates, Douglas Alfred Lautner, Tucker Tomlinson, James Nagle
  • Patent number: 11121624
    Abstract: A configurable multi-output charge pump for power supply generation includes one or more flying capacitors (FCs) arranged to be switchably connected into a plurality of circuit configurations operative to provide respective output voltages at a common charging node. A configuration logic circuit is operative to generate one or more configuration setting control signals to effectuate a particular circuit configuration. One or more storage capacitors (SC) are independently and individually connectable to the common charging node depending on a selection control logic having a configurable duty cycle, wherein each SC is operative to supply a respective voltage output to drive a corresponding electrical load.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: September 14, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Daran DeShazo
  • Publication number: 20210252291
    Abstract: An implantable medical device (IMD) includes multiple stimulation engines (SEs) for independently stimulating respective electrode sets of a lead system. A voltage multiplier (VM) is configured to generate an adjustable target voltage at an output node. Each stimulation engine includes first switching circuitry to switchably connect an anodic node of the SE to the VM output node and second switching circuitry to switchably connect a cathodic node of the SE to a current sink circuit. Discharge switching circuitry may be disposed between the anodic and cathodic nodes of each SE. A selector and associated digital control logic block are operative to generate control signals for independently controlling respective SEs such that each SE may be activated to stimulate or discharge a corresponding select set of electrodes independently from or in concert with remaining SEs.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 19, 2021
    Applicant: Advanced Neuromodulation Systems, Inc.
    Inventors: Daran DeShazo, Steven Boor, Gavin L Rade
  • Patent number: 11090496
    Abstract: In one embodiment, an implantable medical device (IMD) comprises: therapeutic circuitry for controlling delivery of a medical therapy to a patient; a processor for controlling the IMD according to executable code; wireless communication circuitry for conducting wireless communications; and memory for storing data and executable code, wherein the executable comprises code for causing the processor to (1) communicate with an external programming device to define therapeutic settings for operation of the IMD, (2) perform validation operations on one or more instances of therapeutic settings by determining whether a respective instance of therapeutic settings is accompanied by permanent validation data or temporary validation data, wherein the validation operations comprise analyzing temporary validation data against at least one key of a plurality of cryptographic keys stored by the IMD.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 17, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Christopher S. L. Crawford