Patents Assigned to Advanced Neuromodulation Systems, Inc.
  • Patent number: 9656077
    Abstract: The present application relates to a new stimulation design which can be utilized to treat neurological conditions. The stimulation system produces a combination of burst and tonic stimulation which alters the neuronal activity of the predetermined site, thereby treating the neurological condition or disorder.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: May 23, 2017
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Dirk De Ridder
  • Patent number: 9555248
    Abstract: A method is provided to deliver C tactile fiber stimulation to nervous tissue of a patient. The method comprises delivering a first tactile stimulation waveform to a first electrode combination within an array of electrodes located proximate to nervous tissue of interest. The method further provides sequentially delivering successive tactile stimulation waveforms to successive electrode combinations within the array of electrodes. The first and successive tactile stimulation waveforms include at least one series of pulses having a pulse amplitude and pulse frequency. Delaying delivery of the successive tactile stimulation waveforms by a firing delay, the pulse amplitude, pulse frequency and firing delay represent therapy parameters. The method manages at least one of the therapy parameters of the first and successive tactile stimulation waveforms to excite C tactile fibers of the nervous tissue of interest.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: January 31, 2017
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Dirk De Ridder
  • Patent number: 9533164
    Abstract: In one embodiment, a method of operating an implantable pulse generator comprises: providing power to a voltage converter at a first voltage level; outputting a second voltage level by the voltage converter, the second voltage level being a variable voltage level that is controlled by a control signal provided to the voltage converter, the second voltage level being provided to pulse generating circuitry of the implantable pulse generator, the second voltage level being selectable from a plurality of voltages including non-integer multiples of the first voltage level; generating pulses by the pulse generating circuitry, the pulse generating circuitry including current control circuitry for controlling the pulses to cause the pulses to provide substantially constant current to tissue of the patient; and applying at least two different control signals to the voltage converter during individual pulses to provide successively increasing voltages to the pulse generating circuitry during a respective pulse.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: January 3, 2017
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John H. Erickson, Robert L. McCormick, Benjamin A. Tranchina
  • Patent number: 9474852
    Abstract: The present application involves a method and a system for using electrical stimulation and/or chemical stimulation to treat depression. More particularly, the method comprises surgically implanting an electrical stimulation lead and/or catheter that is in communication with a predetermined site which is coupled to a signal generator and/or infusion pump that release either an electrical signal and/or a pharmaceutical resulting in stimulation of the predetermined site thereby treating the mood and/or anxiety.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: October 25, 2016
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Andres M. Lozano, Helen S. Mayberg
  • Patent number: 9457194
    Abstract: In one embodiment, a method of fabrication an implantable lead for providing electrical pulses to tissue of a patient, the method comprises: (i) providing a sheath of transparent insulative material, wherein the sheath comprises a plurality of lumens; (ii) scanning across the sheath with a confocal displacement meter to generate displacement data; (iii) processing the displacement data, in software executed on a computer system, to generate a representation of an exterior surface and lumens of the sheath; (iv) automatically selecting locations, in software executed on a computer system, on the exterior surface of application of laser pulses to create apertures in the sheath that provide access to respective lumens of the sheath; and (v) applying laser pulses according to the sheath to create the apertures.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: October 4, 2016
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Jerome Boogaard
  • Patent number: 9446252
    Abstract: In one embodiment, a method, of operating an implantable medical device, comprises: (i) operating reset logic within the implantable medical device that is independently operable from a processor of the implantable medical device after the implantable medical device is implanted within a patient, wherein the processor is adapted for central control of the implantable medical device; (ii) operating a magnetic field sensor in the implantable medical device; (iii) generating digital data using, at least, the magnetic field sensor; (iv) detecting, by the reset logic, a digital key in the digital data; (v) in response to (iv), asserting a reset signal on a pin of the processor by the reset logic; and (vi) conducting reset operations in the processor in response to the reset signal.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 20, 2016
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventor: Dennis Benson
  • Patent number: 9427585
    Abstract: Systems and methods for treating a neurological disorder comprising determining a first set of neural stimulation parameters capable of treating a first subset of symptoms, determining a second set of neural stimulation parameters capable of treating a second subset of symptoms, and applying a neural stimulation therapy based upon the first set of neural stimulation parameters and the second set of neural stimulation parameters to the patient. The first set of neural stimulation parameters can include electrical stimulation at a first frequency, and the second set of neural stimulation parameters can include electrical stimulation at a second frequency. In other embodiments, a treatment method comprises applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval, and applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: August 30, 2016
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventor: Bradford Evan Gliner
  • Patent number: 9370653
    Abstract: In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: June 21, 2016
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Ryan Sefkow, Christopher A. Crawford, Jeffrey Mitchell, Kevin Wilson, Raymond P. Bray, John R. Gonzalez
  • Patent number: 9358384
    Abstract: A neurostimulation system is disclosed herein. The neurostimulation system includes an implantable pulse generator and an implantable therapy lead configured to be electrically coupled to the implantable pulse generator. The implantable therapy lead includes a flexible paddle electrode array with flexible electrodes. Each flexible electrode has a segmented configuration having first and second electrode segments and a flexible bridge or living hinge joining together the first and second electrode segments.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: June 7, 2016
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventor: Jodi Townsley Dubuclet
  • Patent number: 9320910
    Abstract: An implantable pulse generator (IPG) is fabricated by utilizing a lead body with a plurality of conductors enclosed in insulative material along a first length of the conductors, and a second length of the conductors being exposed. A tubular structure is placed over the lead body with the plurality of conductors extending through it. A feedthrough assembly includes a plurality of feedthrough pins surrounded by insular material with a ferrule extending about an outer surface of the feedthrough assembly. The plurality of conductors are attached to the plurality of feedthrough pins and the ferrule of the feedthrough assembly is welded to the tubular structure to form an intermediate assembly. The intermediate assembly is then welded to one or more housing components of the IPG providing a hermetically seal. A connector portion on a distal end of the lead body is provided to electrically connect to terminals of a stimulation lead.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 26, 2016
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Ken McGiboney, Galen L. Smith, Michael Gaines, Jerome Boogaard
  • Patent number: 9270137
    Abstract: A charging energy control system includes an implantable medical device (IMD) and an external charger. The IMD receives charging energy to recharge a battery during a charging energy acceptance period and rejects the charging energy during an actual charging energy rejection period. The external charger transmits the charging energy to the IMD in order to recharge the battery. The external charger includes a charging controller configured to determine the actual charging energy rejection period, and regulate the charging energy during which the charging controller predicts a predicted charging energy rejection period of the IMD based on the actual recharging energy rejection period. The charging controller is configured to cease or reduce transmission of the charging energy during a charging energy conservation period that is at least a portion of the predicted charging energy rejection period.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: February 23, 2016
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventor: John C. Greene
  • Patent number: 9238134
    Abstract: In one aspect, an apparatus is provided for securing an electrical stimulation lead in position in a person's brain. The apparatus includes a flexible disc comprising a substantially radial slot adapted to secure the lead in position within the brain after implantation. The slot is adapted to elastically expand as the lead is inserted into the slot and is also adapted to elastically contract on the lead to secure the lead in position within the brain after implantation. The apparatus further includes a ring adapted to seat within a burr hole formed in the person's skull. The ring comprises a channel adapted to receive and secure the flexible disc.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 19, 2016
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Peter R Lando
  • Patent number: 9186510
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 17, 2015
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 9144679
    Abstract: In one embodiment, a method for defining a stimulation program for electrical stimulation of a patient, the method comprising: providing a single screen user interface that comprises a first plurality of controls and a second plurality of controls, the first plurality of controls allowing selection of multiple stimulation parameters for a plurality of stimulation sets, the second plurality of controls allowing selection of multiple stimulation parameters defining burst stimulation and tonic stimulation; receiving user input in one or more of the second plurality of controls; and automatically modifying parameters for one or more stimulation sets in response to receiving the user input in one or more of the second plurality of controls and modifying values displayed in one or more controls of the first plurality of controls according to the modified parameters, the modified parameters reflecting a stimulation program that includes an interleaved pattern of burst stimulation and tonic stimulation for delivery t
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 29, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Patrick M. Cullen, John H. Erickson
  • Publication number: 20150229139
    Abstract: A charging energy control system may include an implantable medical device (IMD) and an external charger. The IMD receives charging energy to recharge the battery during a charging energy acceptance period and rejects the charging energy during an actual charging energy rejection period. The external charger transmits the charging energy to the IMD in order to recharge the battery. The external charger may include a charging controller configured to determine the charging energy rejection period, and regulate the charging energy during which the charging controller predicts a predicted charging energy rejection period of the IMD based on the actual recharging energy rejection period. The charging controller is configured to cease or reduce transmission of the charging energy during a charging energy conservation period that is at least a portion of the predicted charging energy rejection period.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 13, 2015
    Applicant: Advanced Neuromodulation Systems, Inc. d/b/a St. Jude Medical Neuromodulation Division
    Inventor: John C. Greene
  • Patent number: 9084882
    Abstract: The present disclosure provides systems and methods for neurostimulation. The system includes an electrode assembly for a paddle lead. The electrode assembly includes a wire wound around a bobbin to form an inductor. The wire is coupled to an input contact plate and an output contact plate. The bobbin is inserted into an aperture defined through an electrode, such that the inductor is substantially surrounded by the electrode.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: July 21, 2015
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventor: Aaron Raines
  • Patent number: 9079012
    Abstract: Methods for securing electrode leads are disclosed. An electrode system in accordance with one embodiment includes an electrode contact, a connector attached to the electrode contact, and an electrical lead. The electrical lead can be received in an opening of the contact, with an inner surface of the opening applying a generally uniform radial pressure around a circumference of the electrical lead. For example, the contact can have a tubular shape, optionally with an elongated slit, and can be crimped around the lead to apply the generally uniform radial pressure.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: July 14, 2015
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Corinne H. Johnson, Jay Miazga
  • Patent number: 9054436
    Abstract: In one embodiment, a method of fabrication of a stimulation lead for electrical stimulation of tissue of a patient, the method comprises: providing a substrate of non-conductive material for a stimulation portion of the stimulation lead; processing the substrate to create a plurality of recessed features into a surface of the substrate, wherein the plurality of recessed features comprise a plurality of paths for electrical traces and a plurality of surfaces for electrodes with each of the surfaces being connected to one of the traces; providing first conductive material over the surface of the substrate; subjecting the surface of the substrate to mechanical processing to remove conductive material from portions of the substrate disposed above the plurality of recessed features, wherein each respective connected electrode and trace is electrically isolated from the other electrodes and traces after the mechanical processing; electrically plating second conductive material over the first conductive material; pr
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 9, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John Swanson, Kevin Turner, Jerome Boogaard
  • Patent number: 9026218
    Abstract: The present application involves a method and a system for using electrical stimulation and/or chemical stimulation to treat depression. More particularly, the method comprises surgically implanting an electrical stimulation lead and/or catheter that is in communication with a predetermined site which is coupled to a signal generator and/or infusion pump that release either an electrical signal and/or a pharmaceutical resulting in stimulation of the predetermined site thereby treating the mood and/or anxiety.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: May 5, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Andres M. Lozano, Helen S. Mayberg
  • Patent number: 9020608
    Abstract: In one embodiment, a paddle-style lead for implantation in the epidural space through an insertion tool, the paddle-style lead comprises: a paddle structure that comprises: (i) a frame of rigid material, the frame comprising a spring member adapted to bias the frame to assume a first width and a first length, the frame being adapted to elongate to assume a second width and a second length under application of a compressive force; and (ii) elastic material disposed across an interior surface area defined the frame, wherein a plurality of electrodes and a plurality of electrical traces are provided on the elastic material, wherein the plurality of electrical traces are electrically coupled to a plurality of lead conductors and the plurality of electrodes; wherein the plurality of electrical traces comprises a plurality of alternating curves that elongate when the elastic material is stretched.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 28, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: John Swanson