Abstract: In one embodiment, a method of operating an implantable pulse generator comprises: providing power to a voltage converter at a first voltage level; outputting a second voltage level by the voltage converter, the second voltage level being a variable voltage level that is controlled by a control signal provided to the voltage converter, the second voltage level being provided to pulse generating circuitry of the implantable pulse generator, the second voltage level being selectable from a plurality of voltages including non-integer multiples of the first voltage level; generating pulses by the pulse generating circuitry, the pulse generating circuitry including current control circuitry for controlling the pulses to cause the pulses to provide substantially constant current to tissue of the patient; and applying at least two different control signals to the voltage converter during individual pulses to provide successively increasing voltages to the pulse generating circuitry during a respective pulse.
Type:
Grant
Filed:
October 3, 2008
Date of Patent:
January 3, 2017
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
John H. Erickson, Robert L. McCormick, Benjamin A. Tranchina
Abstract: The present application involves a method and a system for using electrical stimulation and/or chemical stimulation to treat depression. More particularly, the method comprises surgically implanting an electrical stimulation lead and/or catheter that is in communication with a predetermined site which is coupled to a signal generator and/or infusion pump that release either an electrical signal and/or a pharmaceutical resulting in stimulation of the predetermined site thereby treating the mood and/or anxiety.
Abstract: In one embodiment, a method of fabrication an implantable lead for providing electrical pulses to tissue of a patient, the method comprises: (i) providing a sheath of transparent insulative material, wherein the sheath comprises a plurality of lumens; (ii) scanning across the sheath with a confocal displacement meter to generate displacement data; (iii) processing the displacement data, in software executed on a computer system, to generate a representation of an exterior surface and lumens of the sheath; (iv) automatically selecting locations, in software executed on a computer system, on the exterior surface of application of laser pulses to create apertures in the sheath that provide access to respective lumens of the sheath; and (v) applying laser pulses according to the sheath to create the apertures.
Abstract: An implantable pulse generator (IPG) is fabricated by utilizing a lead body with a plurality of conductors enclosed in insulative material along a first length of the conductors, and a second length of the conductors being exposed. A tubular structure is placed over the lead body with the plurality of conductors extending through it. A feedthrough assembly includes a plurality of feedthrough pins surrounded by insular material with a ferrule extending about an outer surface of the feedthrough assembly. The plurality of conductors are attached to the plurality of feedthrough pins and the ferrule of the feedthrough assembly is welded to the tubular structure to form an intermediate assembly. The intermediate assembly is then welded to one or more housing components of the IPG providing a hermetically seal. A connector portion on a distal end of the lead body is provided to electrically connect to terminals of a stimulation lead.
Type:
Grant
Filed:
March 31, 2011
Date of Patent:
April 26, 2016
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Ken McGiboney, Galen L. Smith, Michael Gaines, Jerome Boogaard
Abstract: In one aspect, an apparatus is provided for securing an electrical stimulation lead in position in a person's brain. The apparatus includes a flexible disc comprising a substantially radial slot adapted to secure the lead in position within the brain after implantation. The slot is adapted to elastically expand as the lead is inserted into the slot and is also adapted to elastically contract on the lead to secure the lead in position within the brain after implantation. The apparatus further includes a ring adapted to seat within a burr hole formed in the person's skull. The ring comprises a channel adapted to receive and secure the flexible disc.
Abstract: In one embodiment, a method for defining a stimulation program for electrical stimulation of a patient, the method comprising: providing a single screen user interface that comprises a first plurality of controls and a second plurality of controls, the first plurality of controls allowing selection of multiple stimulation parameters for a plurality of stimulation sets, the second plurality of controls allowing selection of multiple stimulation parameters defining burst stimulation and tonic stimulation; receiving user input in one or more of the second plurality of controls; and automatically modifying parameters for one or more stimulation sets in response to receiving the user input in one or more of the second plurality of controls and modifying values displayed in one or more controls of the first plurality of controls according to the modified parameters, the modified parameters reflecting a stimulation program that includes an interleaved pattern of burst stimulation and tonic stimulation for delivery t
Abstract: A charging energy control system may include an implantable medical device (IMD) and an external charger. The IMD receives charging energy to recharge the battery during a charging energy acceptance period and rejects the charging energy during an actual charging energy rejection period. The external charger transmits the charging energy to the IMD in order to recharge the battery. The external charger may include a charging controller configured to determine the charging energy rejection period, and regulate the charging energy during which the charging controller predicts a predicted charging energy rejection period of the IMD based on the actual recharging energy rejection period. The charging controller is configured to cease or reduce transmission of the charging energy during a charging energy conservation period that is at least a portion of the predicted charging energy rejection period.
Type:
Application
Filed:
February 7, 2014
Publication date:
August 13, 2015
Applicant:
Advanced Neuromodulation Systems, Inc. d/b/a St. Jude Medical Neuromodulation Division
Abstract: In one embodiment, a method of fabrication of a stimulation lead for electrical stimulation of tissue of a patient, the method comprises: providing a substrate of non-conductive material for a stimulation portion of the stimulation lead; processing the substrate to create a plurality of recessed features into a surface of the substrate, wherein the plurality of recessed features comprise a plurality of paths for electrical traces and a plurality of surfaces for electrodes with each of the surfaces being connected to one of the traces; providing first conductive material over the surface of the substrate; subjecting the surface of the substrate to mechanical processing to remove conductive material from portions of the substrate disposed above the plurality of recessed features, wherein each respective connected electrode and trace is electrically isolated from the other electrodes and traces after the mechanical processing; electrically plating second conductive material over the first conductive material; pr
Type:
Grant
Filed:
September 30, 2010
Date of Patent:
June 9, 2015
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
John Swanson, Kevin Turner, Jerome Boogaard
Abstract: The present application involves a method and a system for using electrical stimulation and/or chemical stimulation to treat depression. More particularly, the method comprises surgically implanting an electrical stimulation lead and/or catheter that is in communication with a predetermined site which is coupled to a signal generator and/or infusion pump that release either an electrical signal and/or a pharmaceutical resulting in stimulation of the predetermined site thereby treating the mood and/or anxiety.
Abstract: In one embodiment, a paddle-style lead for implantation in the epidural space through an insertion tool, the paddle-style lead comprises: a paddle structure that comprises: (i) a frame of rigid material, the frame comprising a spring member adapted to bias the frame to assume a first width and a first length, the frame being adapted to elongate to assume a second width and a second length under application of a compressive force; and (ii) elastic material disposed across an interior surface area defined the frame, wherein a plurality of electrodes and a plurality of electrical traces are provided on the elastic material, wherein the plurality of electrical traces are electrically coupled to a plurality of lead conductors and the plurality of electrodes; wherein the plurality of electrical traces comprises a plurality of alternating curves that elongate when the elastic material is stretched.
Abstract: In one embodiment, an implantable pulse generator for electrically stimulating a patient comprises: a metallic housing enclosing pulse generating circuitry; a header mechanically coupled to the metallic housing, the header adapted to seal terminals of one or more stimulation leads within the header and to provide electrical connections for the terminals; the header comprising an inner compliant component for holding a plurality of electrical connectors, the plurality of electrical connectors electrically coupled to the pulse generating circuitry through feedthrough conductors, wherein the plurality of electrical connectors are held in place in recesses within the compliant inner component, the header further comprising an outer shield component adapted to resist punctures, the outer shield component fitting over at least a portion of the inner compliant component.
Abstract: Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits, are disclosed. A method in accordance with one embodiment includes engaging a patient in a function controlled at least in part by a target neural population, and applying electromagnetic signals to the target neural population. A target parameter in accordance with which the electromagnetic signals are applied is adjusted, based at least in part on a characteristic of the patient's performance of the function. Electromagnetic signals are applied to the patient with the adjusted target parameter, and the patient's response to the electromagnetic signals, including the characteristic of the patient's performance, is evaluated.
Type:
Grant
Filed:
April 19, 2007
Date of Patent:
January 6, 2015
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Brad Fowler, Leif R. Sloan, Joleen Borgerding
Abstract: Systems and methods for applying signals, including contralesional electromagnetic signals, to neural populations, are disclosed. A particular method can be directed to treating a patient having a subject neural population in a first (e.g., ipsilesional) hemisphere of the brain, with the subject neural population having, or previously having, a functionality capable of being improved. The method can include directing an application of electromagnetic signals at least proximate to a target neural population at a second (e.g., contralesional) hemisphere of the brain to at least constrain a functionality of the target neural population, which has transcallosal communication with the first hemisphere.
Type:
Grant
Filed:
April 6, 2007
Date of Patent:
January 6, 2015
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Alvaro Pascual-Leone, Bradford E. Gliner, David Himes, Leif R. Sloan
Abstract: In one embodiment, a method of fabrication of a stimulation lead comprising a plurality of segmented electrodes for stimulation of tissue of a patient, the method comprises: providing an elongated, substantially cylindrical substrate, the substrate comprising a plurality of recesses defined in an outer surface of the substrate; coating the substrate with conductive material; patterning conductive material on the substrate to form a plurality of electrode surfaces for at least the plurality of segmented electrodes and a plurality of traces connected to the plurality of electrode surfaces, wherein each electrode surface and its corresponding trace are defined in the recesses on the outer surface of the substrate and are electrically isolated from other electrode surfaces and traces; providing insulative material over at least the plurality of traces; and electrically coupling the plurality of traces to conductive wires of a lead body.
Type:
Grant
Filed:
April 18, 2012
Date of Patent:
January 6, 2015
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
John Swanson, Kevin Turner, Jerome Boogaard
Abstract: A method and system are provided to assist in programming of a neurostimulator based on a collection of pre-existing therapy profiles. The method and system access a collection of pre-existing therapy profiles derived from prior actual patients or patient models. The pre-existing therapy profiles include stimulation programs mapped to pre-existing patient profiles. The pre-existing patient profiles have at least one of i) prior lead attribute, ii) prior pain maps, and iii) prior stimulation maps for prior patients or models of patients. The method and system further compare the new patient profile with at least a portion of the collection of pre-existing patient profiles to generate profile matching scores indicating an amount of similarity between the pre-existing patient and the new therapy profile.
Abstract: Embodiments herein include an external system and method to detect an implanted lead coupled to an implanted neurostimulation device (INSD). The system and method comprise a handheld probe having electrodes configured to be positioned external to a surface of a patient and proximate to a region of the patient having the implanted lead for an implanted INSD. The electrodes are configured to measure a stimulation output from the implanted lead of the INSD. The system and method include a controller coupled to the electrodes to receive measured signals from the electrodes. The measured signals represent the stimulation output of the INSD. The controller processes the measured signals to obtain lead information. The system includes a user interface to present the lead information to a user. The lead information is indicative of at least one of an operation of the lead and a position of the lead.
Type:
Grant
Filed:
September 3, 2013
Date of Patent:
December 2, 2014
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Michael J. Campbell, William L. Winstrom
Abstract: A neurostimulator lead including an elongated lead body having stimulating and proximal end portions and a center axis extending therebetween. The lead body includes an inner tubing that extends along the center axis. The inner tubing includes wire conductors that extend between the stimulating and proximal end portions. The lead also includes multiple electrode-inductor assemblies that are positioned along the stimulating end portion and spaced apart from one another along the center axis. Each of the electrode-inductor assemblies includes an inductor coil that is electrically coupled to one of the wire conductors and an electrode that is located proximate to the inductor coil. The electrode and the inductor coil are electrically joined, and the inductor coil is configured to prevent a flow of induced current that occurs when the lead is exposed to external magnetic fields.
Abstract: The present application relates to a new stimulation design which can be utilized to treat neurological conditions. The stimulation system produces a burst mode stimulation which alters the neuronal activity of the predetermined site, thereby treating the neurological condition or disorder. The burst stimulus comprises a plurality of groups of spike pulses having a maximum inter-spike interval of 100 milliseconds. The burst stimulus is separated by a substantially quiescent period of time between the plurality of groups of spike pulses. This inter-group interval may comprise a minimum of 5 seconds.
Abstract: In one embodiment, a deep brain stimulation (DBS) system for electrically stimulating a target location in the brain of a patient, comprises: pulse generating circuitry for generating electrical pulses; at least one electrical lead for conducting electrical pulses generated by the pulse generating circuitry to the target location using one or several stimulation electrodes, wherein the at least one electrical lead further comprises one or several electrochemical sensors for sensing an extracellular level of one or several neurotransmitters and/or precursors; and a controller for controlling the pulse generating circuitry using closed-loop feedback based upon the extracellular level of the one or several neurotransmitters, wherein the controller for controlling the pulse generating circuitry processes the extracellular level of the one or several neurotransmitters using a measured impedance between one or several of the electrochemical sensors and a reference electrode.
Abstract: The present invention relates to a method of identifying a region of the brain by measuring neuronal firing and/or local field potentials by recording discharges from at least one implanted electrode and analyzing the recording of the discharges within the beta frequency band range to determine an area of beta oscillatory activity. Once the region of the brain is identified, this region may be stimulated to disrupt the beta oscillatory activity thereby treating a movement disorder.