Abstract: In one embodiment, an external charging device for recharging an implanted medical device, comprises: a battery for powering the external charging device; a coil for radiating RF power; drive circuitry for driving the coil according to a duty cycle; circuitry for generating a signal that is indicative of an amount of current flowing through the coil; and control circuitry for controlling the drive circuitry, wherein the control circuitry is operable to process the signal from the circuitry for generating to detect when a coil of the implantable medical device temporarily ceases absorbing RF power, the control circuitry modifying the duty cycle in response to detection of the coil of the implantable medical device temporarily ceasing absorbing RF power.
Abstract: In one embodiment, a method of fabrication of a stimulation lead comprising a plurality of segmented electrodes for stimulation of tissue of a patient, the method comprises: providing a substrate comprising (i) a substantially cylindrical body and (ii) a plurality of projections extending radially from the cylindrical body; coating the substrate with first conductive material; patterning the first conductive material on the cylindrical body into a plurality of traces, the plurality of traces extending along the cylindrical body and electrically contacting conductive material about the plurality of projections; providing an insulative layer over the traces; coating the insulative layer over the traces with second conductive material; patterning the second conductive material to form at least a plurality of electrode surfaces including a plurality of segmented electrodes, the segmented electrodes being in electrical contact with conductive material on projections of the plurality of projections; and electricall
Type:
Application
Filed:
January 23, 2014
Publication date:
May 15, 2014
Applicant:
Advanced Neuromodulation Systems, Inc.
Inventors:
John W. Swanson, Kevin Turner, Jerome Boogard
Abstract: Methods and systems for intracranial neurostimulation and/or sensing are disclosed. An intracranial signal transmission system in accordance with an embodiment of the invention includes a generally electrically insulating body having a head portion configured to be positioned at least proximate to an outer surface of a patient's skull, and a shaft portion configured to extend into an aperture in the patient's skull. The system can further include at least one electrical contact portion integrated with the support body. The at least one electrical contact portion can be positioned to transfer electrical signals to, from, or both to and from the patient's brain via an aperture in the patient's skull.
Type:
Grant
Filed:
July 24, 2009
Date of Patent:
May 6, 2014
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
David Warren Lowry, Brad Fowler, Gene Thompson
Abstract: According to one embodiment, an electrode for use in electrostimulation is provided, where the electrode comprises a notch that operates to substantially eliminate gaseous material from being trapped about the electrode during a molding process of an electrostimulation lead.
Abstract: A paddle lead includes a plurality of electrodes configured in at least three rows of three electrodes with the second, intermediate row operable to provide anode guarding. The paddle lead further includes a plurality of grooves disposed on a surface opposite the electrodes to facilitate the insertion of the paddle lead within a patient by inhibiting the veering of the paddle lead to one side or the other of the dorsal column as the paddle lead is advanced along the dorsal column midline during implantation.
Type:
Grant
Filed:
June 25, 2013
Date of Patent:
April 29, 2014
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Richard B. North, Terry D. Daglow, Stephen L. Goldman
Abstract: Systems and methods for patient interactive neural stimulation and/or chemical substance delivery are disclosed. A method in accordance with one embodiment of the invention includes affecting a target neural population of the patient by providing to the patient at least one of an electromagnetic signal and a chemical substance. The method can further include detecting at least one characteristic of the patient, with the characteristic at least correlated with the patient's performance of an adjunctive therapy task that is performed in association with affecting the target neural population. The method can still further include controlling at least one parameter in accordance with which the target neural population is affected, based at least in part on the detected characteristic.
Type:
Grant
Filed:
December 20, 2010
Date of Patent:
April 22, 2014
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Andrew D Firlik, Bradford Evan Gliner, W Douglas Sheffirld, Leif R Sloan
Abstract: In one embodiment, a stimulation system for generating and delivering electrical stimulation pulse to tissue of a patient, comprises: a pulse generator for generating electrical pulses, the pulse generator comprising a housing portion and a header portion with feedthroughs extending from the housing portion into the header portion; and a stimulation lead comprising a flex film component enclosed in a lead body of insulative material, the flex film component including a plurality of electrically isolated conductors extending along a substantial length of the stimulation lead, the stimulation lead further comprising a plurality of electrodes electrically coupled to the conductors, the flex film component comprising a proximal portion that is exposed out of the insulative material of the lead body and includes a plurality of terminal bond bands, the terminal bond bands being electrically coupled to the conductors; and wherein the header portion of the pulse generator comprises a lid component to compress the ter
Abstract: In one embodiment, an implantable pulse generator (IPG) for generating electrical pulses for stimulation of tissue of a patient, comprises: a controller for controlling operations of the IPG; pulse generating circuitry for generating electrical pulses; and conversion circuitry for converting a received logic signal generated by a first voltage domain for provision to a second voltage domain, the conversion circuitry comprising a first stage and a second stage, wherein (i) the first stage receives first signals at first and second logic levels; (ii) the second stage receives second signals at third and fourth logic levels, (iii) the second stage comprising two sets of cross-coupled transistors for generating a rail-to-rail output at the third and fourth logic levels according to whether the received logic signal is at the first or second logic level.
Abstract: In one embodiment, a system for wrapping biomedical conductor wires about core material, comprises: a payout assembly and a take-up assembly for controllably paying out the core material and taking up the core material with the wrapped conductor wires; a turntable; a plurality of carriers, disposed on the turntable, for letting out the conductor wires; and a die for applying force to the conductor wires as the wires are wrapped about the core material, the die adapted to rotate according to group rotation of the plurality of carriers by the turntable during operation of the system, wherein the die comprises one or more features asymmetrically arranged about a circumference of the die, the one or more features adapted to direct the conductor wires from the plurality of carriers onto the core material in an axially repeating pattern of groups of closely spaced wires with each group separated by a distance larger than the spacing between adjacent wires within each group.
Abstract: In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.
Type:
Application
Filed:
November 20, 2013
Publication date:
March 20, 2014
Applicant:
Advanced Neuromodulation Systems, Inc. d/b/a St. Jude Medical Neuromodulation Division
Abstract: An implantable, substantially isodiametric, low resistance implantable lead having at least one electrode positioned in a stimulation/sensing portion of the lead as well as a method of manufacturing the same. At least the stimulation/sensing portion is unitized through partially surrounding and supporting insulation and conductive element(s) of the stimulation/sensing portion with a fused matrix of material having mechanical properties consistent with a body of the lead.
Type:
Grant
Filed:
September 14, 2012
Date of Patent:
March 18, 2014
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Damon Ray Black, Terry Daglow, John Erickson, Robert Earl Jones, B. Reno Lauro
Abstract: Nerve cuff electrode including a tubular body having a longitudinal slit having electrodes disposed within the body. Wedge shape slits are formed into at least one of the interior wall and the exterior wall of the body, whereby the number and location of slits provided to facilitate the adjustment of the amount of compressive force of nerve cuff electrode about the nerve.
Type:
Application
Filed:
November 14, 2013
Publication date:
March 13, 2014
Applicant:
Advanced Neuromodulation Systems, Inc., d/b/a St. Jude Medical Neuromodulation Division
Inventors:
Hans Neisz, Ralph Cardinal, Jason J. Skubitz, Jason A. Shiroff
Abstract: Embodiments herein include an external system and method to detect an implanted lead coupled to an implanted neurostimulation device (INSD). The system and method comprise a handheld probe having electrodes configured to be positioned external to a surface of a patient and proximate to a region of the patient having the implanted lead for an implanted INSD. The electrodes are configured to measure a stimulation output from the implanted lead of the INSD. The system and method include a controller coupled to the electrodes to receive measured signals from the electrodes. The measured signals represent the stimulation output of the INSD. The controller processes the measured signals to obtain lead information. The system includes a user interface to present the lead information to a user. The lead information is indicative of at least one of an operation of the lead and a position of the lead.
Type:
Application
Filed:
September 3, 2013
Publication date:
January 2, 2014
Applicant:
Advanced Neuromodulation Systems, Inc.
Inventors:
Michael J. Campbell, William L. Winstrom
Abstract: According to one aspect, a stimulation system is provided for electrically stimulating a predetermined site to treat a fragile bone disorder or condition. The system includes an electrical stimulation lead adapted for implantation into a subcutaneous area in communication with a predetermined site, wherein the site is neuronal tissue that is associated with C2/C3 dermatome area. The stimulation lead includes one or more stimulation electrodes adapted to be positioned in the predetermined site. The system also includes a stimulation source that generates the stimulation pulses for transmission to the one or more stimulation electrodes of the stimulation lead to deliver the stimulation pulses to the predetermined site to treat a fragile bone disorder or condition.
Abstract: In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.
Abstract: In one embodiment, a method for the controlling of the stimulation pulses being delivered via electrodes to a patient during the programming of a pulse generator using a controller device and selecting of a minimum amplitude that corresponds to the minimum amplitude for which the patient can detect stimulation; selecting an electrode combination defined in the controller device; setting the stimulation amplitude; making a determination of the amplitude for the stimulation pulses is greater than the perception amplitude, and if so, changing the amplitude of the stimulation pulses to be less than or equal to the perception amplitude; and if not or subsequent to the changing of the amplitude, changing the selected one of a plurality of electrode combinations to a different combination.
Type:
Application
Filed:
August 19, 2013
Publication date:
December 19, 2013
Applicant:
Advanced Neuromodulation Systems, Inc.
Inventors:
Crystal Goddard, Jason Pounds, Tom Younker, Karen Overton, Jonathan Avedikian
Abstract: Nerve cuff electrode including a tubular body having a longitudinal slit and a flap curled over the slit. The tubular body includes a central cathode disposed between two anodes. The region opposite the slit includes a flexible region that determines the flexibility and strength of tube opening and closing. The cuff electrode having a hinge region with a non-linear effective spring constant which can be higher at low cuff openings and lower at large opening to provide an effective yet non-damaging closing force over a wide range of cuff openings. In use, the tube body can be pulled apart using attached suture loops, with one loop and flap pulled under the nerve followed by part of the tubular body. The tubular body can be closed over the nerve and the flap closed over the tube slit.
Type:
Grant
Filed:
March 6, 2012
Date of Patent:
December 17, 2013
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Hans Neisz, Ralph Cardinal, Jason Shiroff, Jason John Skubitz
Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
Type:
Grant
Filed:
July 8, 2011
Date of Patent:
December 10, 2013
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
Abstract: In one embodiment, a stimulation lead comprises: a lead body of insulative material surrounding a plurality of conductors; a plurality of electrodes; and a plurality of terminals, the plurality of terminals electrically coupled to the plurality of electrodes through the plurality of conductors; wherein each conductor of the plurality of conductors is helically wound about an axis within the lead body in at least an outer portion and an inner portion relative to the axis, the outer portion comprises a first winding pitch and the inner portion comprises a second winding pitch, the second winding pitch is less than the first winding pitch, the inner portion of each respective conductor being disposed interior to the outer portions of other conductors of the plurality of conductors; wherein an impedance of each conductor of the plurality of conductors substantially reduces MRI-induced current when the stimulation lead is present in an MRI system.