Patents Assigned to Advanced Technology Materials
  • Patent number: 7455719
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: November 25, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Publication number: 20080280380
    Abstract: A monitoring system (100) for monitoring fluid in a fluid supply vessel (22, 24, 26, 28, 108) during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors (114, 126) for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module (40, 132, 146) operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor (50, 150) and display (52, 150) operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Application
    Filed: October 24, 2005
    Publication date: November 13, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, JR.
  • Publication number: 20080271991
    Abstract: A continuous-flow supercritical fluid (SCF) apparatus and method for the deposition of thin films onto microelectronic devices or the removal of unwanted layers, particles and/or residues from microelectronic devices having same thereon. The SCF apparatus preferably includes a dynamic mixer to ensure homogeneous mixing of the SCF and other chemical components.
    Type: Application
    Filed: April 17, 2006
    Publication date: November 6, 2008
    Applicant: Advanced Technology Materials , Inc.
    Inventors: Michael B. Korzenski, Eliodor G. Ghenciu, Chongying Xu, Thomas H. Baum, Pamela M. Visintin
  • Patent number: 7446217
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <300° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least one disilane derivative compound that is fully substituted with alkylamino and/or dialkylamino functional groups.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: November 4, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum, Bryan Hendrix, Jeffrey F. Roeder
  • Publication number: 20080269096
    Abstract: A method and composition for removing bulk and ion-implanted photoresist and/or post-etch residue material from densely patterned microelectronic devices is described. The composition includes a co-solvent, a chelating agent, optionally an ion pairing reagent, and optionally a surfactant. The composition may further include dense fluid. The compositions effectively remove the photoresist and/or post-etch residue material from the microelectronic device without substantially over-etching the underlying silicon-containing layer(s) and metallic interconnect materials.
    Type: Application
    Filed: April 14, 2006
    Publication date: October 30, 2008
    Applicant: Advance Technology Materials, Inc.
    Inventors: Pamela M. Visintin, Michael B. Korzenski, Thomas H. Baum
  • Patent number: 7439318
    Abstract: An analytical technique for the accurate and precise measurement of trace water in chemical reagents, comprising the steps of combining a chemical reagent comprising ?5 ppm water, with hexafluoroacetone (HFA), to form a sample mixture comprising at least the chemical reagent and a water derivative of hexafluoroacetone; and measuring the concentration of the water derivative of hexafluoroacetone by gas chromatography.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 21, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Alexander S. Borovik, Ziyun Wang, Chongying Xu, Thomas H. Baum
  • Publication number: 20080254628
    Abstract: A chemical mechanical polishing process including a single copper removal CMP slurry formulation for planarization of a microelectronic device structure preferably having copper deposited thereon. The process includes the bulk removal of a copper layer using a first CMP slurry formulation having oxidizing agent, passivating agent, abrasive and solvent, and the soft polishing and over-polishing of the microelectronic device structure using a formulation including the first CMP slurry formulation and at least one additional additive. The CMP process described herein provides a high copper removal rate, a comparatively low barrier material removal rate, appropriate material selectivity ranges to minimize copper dishing at the onset of barrier material exposure, and good planarization efficiency.
    Type: Application
    Filed: February 5, 2008
    Publication date: October 16, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Karl E. Boggs, Michael S. Darsillo, Peter Wrschka, James Welch
  • Patent number: 7434372
    Abstract: A packaging article comprises two sheets of material bonded to form a pouch, with one layer comprising a first sheet of a porous material, e.g., Tyvek® film, and a second nonporous sheet overlying and sealed to the first sheet. The second sheet is impermeable to passage of gas therethrough and includes a peelable film, e.g., of polyethylene, in contact with the first sheet of porous material to permit peeling removal of the second sheet from the first sheet. A method of integrity testing includes fabricating a packaging article, pressurizing same with a gas and monitoring pressure to determine package integrity, removing the peelable film, and exposing a packaging article to sterilant gas supplied through the porous first sheet.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: October 14, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Steven Vanhamel, Thomas Claes
  • Patent number: 7437060
    Abstract: A delivery system for vaporizing and delivering vaporized solid and liquid precursor materials at a controlled rate having particular utility for semiconductor manufacturing applications. The system includes a vaporization vessel, a processing tool and a connecting vapor line therebetween, where the system further includes an input flow controller and/or an output flow controller to provide a controlled delivery of a vaporizable source material to the vaporization vessel and a controlled flow rate of vaporized source material to the processing tool.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: October 14, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Thomas H. Baum, Chongying Xu
  • Patent number: 7435320
    Abstract: The present invention relates in general to real-time analysis of electrochemical deposition (ECD) metal plating solutions, for the purpose of reducing plating defects and achieving high quality metal deposition. The present invention provides various new electrochemical analytical cell designs for reducing cross-contamination and increasing analytical signal strength. The present invention also provides improved plating protocols for increasing potential signal strength and reducing the time required for each measurement cycle. Further, the present invention provides new methods and algorithms for simultaneously determining concentrations of suppressor, accelerator, and leveler in a sample ECD solution within three experimental runs.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: October 14, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, Mackenzie E. King, Weihua Wang, Glenn Tom, Jay Jung
  • Patent number: 7431494
    Abstract: In an embodiment, an apparatus includes a disposable and flexible mixing tank, configurable as a bag, having a sealed sleeve therein for arrangement of a mixing device. The volume of the mixing tank is defined by an inner wall of the mixing tank and an inner wall of the sleeve. The mixing tank may be used to mix, store, reconstitute and/or dispense materials therein. Draining of a mixture may be aided with pressurized gas. Heating or cooling of the contents of a mixing tank may be accomplished with a thermal exchange fluid disposed within a thermal exchange vessel and in thermal communication with the tank.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 7, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Jean-Pascal Zambaux
  • Publication number: 20080242574
    Abstract: A liquid removal composition and process for removing sacrificial anti-reflective coating (SARC) material from a substrate having same thereon. The liquid removal composition includes at least one fluoride-containing compound, at least one organic solvent, optionally water, and optionally at least one chelating agent. The composition achieves at least partial removal of SARC material in the manufacture of integrated circuitry with minimal etching of metal species on the substrate, such as aluminum, copper and cobalt alloys, and without damage to low-k dielectric materials employed in the semiconductor architecture.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 2, 2008
    Applicant: Advanced Technology Materials, Inc
    Inventors: Melissa K. Rath, David D. Bernhard, Thomas H. Baum, David W. Minsek
  • Patent number: 7427346
    Abstract: An electrochemical drive circuitry and method, such as may be employed in electroplating bath chemical monitoring. A microcontroller can be utilized to selectively apply galvanostatic or potentiostatic conditions on the electrochemical cell, for measurement of response of the electrochemical cell to such conditions, with the microcontroller arranged to generate an offset potential to control potential across the electrochemical cell within a range of potential accommodated by a unipolar power supply, and/or a CMOS analog switch can be employed in combination with individual digital-to-analog converters for each of the current-controlled and potential-controlled conditions, to provide high-speed, dual mode operating capability.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: September 23, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Steven Lurcott
  • Patent number: 7427567
    Abstract: A chemical mechanical polishing slurry and method for using the slurry for polishing copper, barrier material and dielectric material that includes a first and second slurry. The first slurry has a high removal rate on copper and a low removal rate on barrier material. The second slurry has a high removal rate on barrier material and a low removal rate on copper and dielectric material. The first and second slurries can include silica particles, an oxidizing agent, a corrosion inhibitor, and a cleaning agent.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: September 23, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Willaim A. Wojtczak, Thomas H. Baum, Long Nguyen, Cary Regulski
  • Patent number: 7427344
    Abstract: The present invention relates to a method and apparatus for determining organic additive concentrations in a sample electrolytic solution, preferably a copper electroplating solution, by measuring the double layer capacitance of a measuring electrode in such sample solution. Specifically, the present invention utilizes the correlation between double layer capacitance and the organic additive concentration for concentration mapping, based on the double layer capacitance measured for the sample electrolytic solution.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: September 23, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, MacKenzie E. King
  • Patent number: 7423166
    Abstract: A siloxane dielectric precursor for use in a chemical vapor deposition (CVD) process, which has been dosed with a stabilizing agent(s) selected from free-radical inhibitors, end-capping agents and mixtures thereof. The stabilized siloxane dielectric precursor reduces the occurrence of premature deposition reactions occurring in the heated environment of the CVD delivery lines and process hardware.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 9, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum, Ravi K. Laxman, Alexander S. Borovik
  • Patent number: 7406979
    Abstract: A gas cabinet including an enclosure containing at least one gas supply vessel and flow circuitry coupled to the gas supply vessel(s). The flow circuitry is constructed and arranged to flow dispensed gas from an on-stream gas supply vessel to multiple sticks of the flow circuitry, with each of the multiple sticks being joined in gas flow communication to a respective gas-utilizing process unit. The flow circuitry is valved to enable sections of the flow circuitry associated with respective ones of the multiple sticks to be isolated from other sections of the flow circuitry, so that process gas can be flowed to one or more of the sticks, while other sticks are being evacuated and purged, or otherwise are closed to dispensed gas flow therethrough.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: August 5, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael J. Wodjenski, James Dietz
  • Patent number: 7390321
    Abstract: In one embodiment, a method includes puncturing, with a piercing element of a hollow connector, an opening of a membrane that encloses the hollow connector in a gas that is essentially sterile. The puncturing of the opening of the membrane generates a laminar flow of the gas along sides of the opening. The method also includes transferring the fluids, through the opening with the piercing element of the hollow connector.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: June 24, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Jean-Pascal Zambaux
  • Publication number: 20080125342
    Abstract: A removal composition and process for removing silicon-containing layers from a microelectronic device having said layers thereon. The removal composition selectively removes layers including, but not limited to, silicon oxide, plasma enhanced tetraethyl orthosilicate (P-TEOS), borophosphosilicate glass (BPSG), plasma enhanced oxide (PEOX), high density plasma oxide (HDP), phosphosilicate glass (PSG), spin-on-dielectrics (SOD), thermal oxide, updoped silicate glass, sacrificial oxides, silicon-containing organic polymers, silicon-containing hybrid organic/inorganic materials, organosilicate glass (OSG), TEOS, fluorinated silicate glass (FSG), hemispherical grain (HSQ), carbon-doped oxide (CDO) glass, and combinations thereof, relative to lower electrode, device substrate, and/or etch stop layer materials.
    Type: Application
    Filed: November 6, 2007
    Publication date: May 29, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Pamela M. Visintin, Michael B. Korzenski
  • Patent number: 7370791
    Abstract: The present invention is a manufacturing system including a hazard zone and a non-hazard zone. The system includes a storage device, located in the hazard zone, for electrically storing information. The system further includes a communication device, also located in the hazard zone, for storing information to and reading information from the storage device. In the non-hazard zone, a controller is in electrical communication with the communication device. The controller controls the system based on information read from the storage device by the communication device. To limit electrical energy passing to the communication device, an intrinsic safety barrier located in the non-hazard zone is connected between the communication device and the controller device.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 13, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Kevin T. O'Dougherty, Bryan Baillie