Patents Assigned to Agilent Technologies, Inc.
  • Patent number: 11287379
    Abstract: A system for detecting signal components of light induced by multiple excitation sources including: a flow channel including at least two spatially separated optical interrogation zones; a non-modulating excitation source that directs a light beam of a first wavelength at a near constant intensity onto a first of the optical interrogation zones; a modulating excitation source that directs a light beam of a second wavelength with an intensity modulated over time at a modulating frequency onto a second of the optical interrogation zones; a detector subsystem comprising a set of detectors configured to detect light emitted from particles flowing through the at least two optical interrogation zones and to convert the detected light into a total electrical signal; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 29, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Nan Li, Jian Wu, Ye Chen, Tianxing Wang, Xiaobo Wang
  • Patent number: 11275062
    Abstract: An injector, for injecting a fluidic sample into a flow path between a fluid drive and a sample separation unit, includes a sample accommodation volume, a sample drive, and a fluidic valve switchable to selectively couple the volume with the flow path or decouple the volume from the flow path. In an injection switching state, the fluid drive, the separation unit and the sample drive are coupled by the valve so that fluid driven by the sample drive and flowing from the volume to the separation unit and further fluid driven by the fluid drive and flowing from the fluid drive to the separation unit are combined at a fluidic connection upstream of the separation unit. A control unit controls a pressure of the fluid and/or the further fluid during injecting.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 15, 2022
    Assignee: Agilent Technologies, Inc
    Inventors: Daniel Thielsch, Thomas Ortmann, Sam Wouters
  • Patent number: 11255465
    Abstract: A microfluidic check valve includes an inlet bore, an internal chamber, an outlet bore, and a disk freely movable in the chamber between an open position and a closed position. At the open position, the disk permits fluid to flow from the inlet bore, through the chamber, and to the outlet bore. At the closed position, the disk prevents fluid from flowing in the reverse direction from the chamber into the inlet bore. The check valve may be positioned in-line with a fluid conduit, and/or incorporated with various fluidic devices such as, for example, capillary tubes, fittings, and chromatography columns. The check valve is capable of withstanding high fluid pressures, while featuring a small swept volume, such as a nano-scale volume. The check valve may be utilized, for example, to prevent fluid back flow and isolate pressure pulses in fluid flow systems.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 22, 2022
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Ares Geovanos, Hongfeng Yin
  • Patent number: 11253859
    Abstract: A microfluidic apparatus for separating a droplet of an emulsion in a microfluidic environment is described. The microfluidic apparatus includes a flow cell comprising a first microfluidic channel configured for flowing a first fluid through the flow cell and a second microfluidic channel configured for flowing a stream of a second fluid through the flow cell. The microfluidic apparatus further comprises a first electrode positioned at the first microfluidic channel and a second electrode positioned at the second microfluidic channel on an opposite side of the interface with respect to the first electrode. The first electrode, the second electrode, and the first and second microfluidic channels are configured to generate a non-uniform electric field gradient in the microfluidic apparatus.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: February 22, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Curt A. Flory, Dustin Chang
  • Patent number: 11244818
    Abstract: A method for operating a data processing system to find peaks in a mass spectrum that includes an ordered set of measurements of the abundances of species as a function of the mass/charge ratio of the species is disclosed. The method includes selecting a candidate blob that has a plurality of blob peaks from the mass spectrum. The data processing system selects a candidate blob peak for characterization. The candidate blob peak is approximated by a first species peak using a species peak model having a plurality of parameters by fitting the species peak model to a portion of the blob that has values that are substantially free of contributions from other species peaks that overlap with the first species peak and that are not represented by the species peak model. The first species peak is then subtracted from the candidate blob.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 8, 2022
    Assignee: Agilent Technologies, Inc.
    Inventor: Daniel Y. Abramovitch
  • Patent number: 11243148
    Abstract: The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 8, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Kyle Schleifer, Kristin Briana Bernick, Adrienne Mccampbell, Nicholas M. Sampas, Victor Lim
  • Patent number: 11239068
    Abstract: Systems and methods for controlling mass filtering of polyatomic ions in an ion beam passing through an inductively coupled plasma mass spectrometer (ICP-MS). Polyatomic ion mass data representative of the exact mass of a polyatomic ion having a target isotope is determined. A control signal is generated based on the determined polyatomic ion mass data and output to an ICP-MS to filter based on mass the polyatomic ions in the ion beam traveling through the ICP-MS to an ion detector.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: February 1, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Naoki Sugiyama, Amir Liba, Mark Lee Kelinske, Glenn David Woods
  • Patent number: 11226316
    Abstract: A method of manufacturing a component having a flow path, wherein the method includes forming a high pressure resistant casing with a cavity therein, inserting a body of bioinert material into the cavity to thereby form a composite block, and further processing the composite block for at least partially forming the flow path defined by the component.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 18, 2022
    Assignee: Agilent Technologies, Inc
    Inventor: Stefan Falk-Jordan
  • Patent number: 11217437
    Abstract: Electron capture dissociation (ECD) is performed by transmitting an electron beam through a cell along an electron beam axis, generating plasma in the cell by energizing a gas with the electron beam, and transmitting an ion beam through the interaction region along an ion beam axis to produce fragment ions. Generating the plasma forms an interaction region in the cell spaced from and not intersecting the electron beam, and including low-energy electrons effective for ECD. The ion beam axis may be at an angle to and offset from the ion beam axis, such that the electron beam does not intersect the ion beam.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: January 4, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Kenneth R. Newton, Nigel P. Gore, Mark Denning
  • Patent number: 11213767
    Abstract: A fitting for providing a fluid connection between a capillary and a fluidic conduit of a fluidic component, the fitting comprising a male piece and a female piece for connection with the male piece, wherein the male piece comprises a housing with a capillary reception configured for receiving the capillary, wherein a part of the capillary being received in the capillary reception is circumferentially covered by a sleeve, an elastic biasing mechanism being arranged at least partially within the housing, being configured for biasing the capillary against the female piece and being supported by the sleeve, and a locking mechanism being arranged at least partially within the housing and being configured for locking the capillary to the fitting.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 4, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Claus Lueth, Darijo Zeko
  • Patent number: 11209389
    Abstract: A method of handling a fluidic sample in a sample separation device includes at least partly immobilizing the fluidic sample by an immobilizing agent inhibiting spatial broadening of the fluidic sample, and subsequently at least partly releasing the fluidic sample from the immobilizing agent.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 28, 2021
    Assignee: Agilent Technologies, Inc.
    Inventor: Ludwig Gutzweiler
  • Publication number: 20210380421
    Abstract: There is disclosed a method of producing etched non-porous particles. The method includes, in some examples, coating a non-porous particle with a hydrophilic polymer and treating the coated particle with acid or base. Also provided is etched non-porous particles capable of separating a variety of analytes, including biomolecules.
    Type: Application
    Filed: April 19, 2021
    Publication date: December 9, 2021
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Ta-Chen WEI
  • Publication number: 20210371454
    Abstract: Ammonium cation detergents comprising a quaternary or tertiary ammonium cation can be used as detergents to denature proteins and are particularly useful in denaturing glycoproteins or glycopeptides prior to enzymatic deglycosylation. Ammonium cation detergents with sulfate or sulfonate anions are particularly useful.
    Type: Application
    Filed: August 10, 2021
    Publication date: December 2, 2021
    Applicant: Agilent Technologies, Inc.
    Inventors: Michael J. KIMZEY, Francis T. HAXO, Vaishali SHARMA
  • Patent number: 11181422
    Abstract: A method of calibrating a spectrophotometer comprising a flash lamp. The method comprises receiving light from the flash lamp at a monochromator of the spectrometer, wherein the flash lamp is a short arc noble gas flash lamp with transverse or axially aligned electrodes; configuring the monochromator to progressively transmit the received light at each of a plurality wavelengths of a selected range of wavelengths, wherein the range of wavelengths is associated with a wavelength feature according to a known spectral profile of the flash lamp, and wherein the wavelength feature is a self-absorption feature; and determining a spectrum of the flash lamp, wherein the spectrum comprises a corresponding power or intensity value for each of the plurality of wavelengths.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 23, 2021
    Assignee: Agilent Technologies, Inc.
    Inventors: David Death, Philip Valmont Wilson
  • Patent number: 11175212
    Abstract: An apparatus and method for analyzing particulates in a sample is disclosed. The method includes placing the sample on a moveable stage in an apparatus having a tunable MIR light scanner and a visible imaging system, the stage moving between the MIR light scanner and the visible imaging system, providing a visible image of the sample, and receiving user input as to a region of the sample that is to be analyzed. The sample is then moved to the MIR light scanner, the MIR light scanner generating an MIR light beam that is focused to a point on the specimen and measuring light reflected from the specimen. The specimen is then scanned at a first MIR wavelength by moving the specimen relative to the MIR light beam, and particles are identified that meet a selection criterion. The MIR absorption spectrum of each of the identified particle is then automatically measured.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 16, 2021
    Assignee: Agilent Technologies, Inc.
    Inventors: Christopher Ryan Moon, Andrew Ghetler, Matthew Kole
  • Publication number: 20210333269
    Abstract: Bispyridines improve the labeling of nucleophiles, including amines and thiols and are particularly useful for improving labeling with acidic and basic labels. Use of bispyridines with such labels dramatically increases labeling compared to protocols without a bispyridine. The labeled nucleophile can then be subjected to standard analytical methods.
    Type: Application
    Filed: July 7, 2021
    Publication date: October 28, 2021
    Applicant: Agilent Technologies, Inc.
    Inventors: Francis T. Haxo, Michael J. Kimzey
  • Patent number: 11155854
    Abstract: A method for estimating a gender of a foetus of a pregnant female, said method comprising measuring allele presences (DX) for a first plurality of genetic markers of the X-chromosome and allele presences (DR) for a second plurality of genetic markers of at least one reference chromosome, different from the X and Y chromosome, in a sample of cell-free DNA from a pregnant female; based on said measured allele presences for said first plurality, determining a first fraction thereof which is associated with purely homozygous genetic markers; based on said measured allele presences for said second plurality, determining a second fraction thereof which is associated with purely homozygous genetic markers; and estimating a gender of said foetus based on said first and second fraction.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 26, 2021
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Paul Vauterin, Michaƫl Vyverman, Joachim De Schrijver
  • Patent number: 11152199
    Abstract: An ion optic assembly includes a set of conductive rods, a first insulator, and a second insulator. The rods are inserted into through-holes of the first insulator, which are arranged about an axis along which the rods are elongated. The rods are then inserted through a bore of the second insulator and become located in notches of the bore, which are arranged about the axis. Accordingly, the first insulator positions one end of the rods at a first distance from the axis, and the second insulator positions the other end of the rods at a second distance from the axis, which may equal to or different from the first distance. The rods contact, and may be spring-biased against, the notches. The assembly may include an electrical contact with fingers spring-biased into contact with the rods. Each insulator may include both through-holes and notches for additional rods.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 19, 2021
    Assignee: Agilent Technologies, Inc.
    Inventors: Robert M. Roberts, James L. Bertsch
  • Patent number: 11152200
    Abstract: An interface device, for providing a fluidic interface between a sample separation device and a mass spectrometer, includes an emitter capillary and a plurality of sample capillaries. The sample capillaries are movably arranged within the emitter capillary for transferring fluidic sample from the sample separation device to the mass spectrometer.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: October 19, 2021
    Assignee: Agilent Technologies, Inc.
    Inventor: Hans-Peter Zimmermann
  • Patent number: D941488
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 18, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Longbin Fang, Qiting Ye, Xin Yao, Zhi Tao, Jian Wu, Nan Li, Xiaobo Wang