Abstract: A method is provided for isolating a compound in a sample by chromatography. The method includes determining an analytical gradient of an analytical system; performing an analytical run using the analytical gradient; identifying a target compound in the sample and determining an analytical retention time of the target compound using chromatographic results of the analytical run; determining an elution point of the target compound using the analytical retention time, the analytical gradient and characteristics of the analytical system; determining automatically a focusing gradient of a preparative system, including a slope segment; and performing a preparative run using the focusing gradient to separate the target compound from the sample. The slope segment includes a slope determining a concentration of solvent in a solvent mixture, which linearly increases from a first offset below the elution point of the target compound to a second offset above the elution point of the target compound.
Type:
Application
Filed:
January 14, 2014
Publication date:
July 16, 2015
Applicant:
Agilent Technologies, Inc.
Inventors:
Frank Wolf, Vlastimil Hruska, Andreas Tei, Manuel Renz
Abstract: Pipette tips of different sizes may be coupled to a pipettor without needing to modify the pipettor. The same pipettor may thus be utilized to exchange different pipette tips, which may be done in an automated manner. Pipette tips may be coupled to adaptors that include proximal ends for interfacing with the pipettor and distal ends for interfacing with pipette tips. The proximal ends may all have the same geometry, matched with the same pipettor. The distal ends may have different geometries matched with different pipette tips. A pipettor may be part of a liquid handling apparatus and movable in an automated manner to different deck positions. The pipettor may include a locking mechanism for locking adaptors to the pipettor or locking pipette tips directly to the pipettors, and an ejection mechanism for ejecting pipette tips from corresponding adaptors.
Abstract: A voltage control circuitry for a detection cell is described, where the detection cell is adapted for determining an electrical property of a sample in a detection cell volume of the detection cell. The voltage control circuitry comprises a power supply adapted for providing a voltage to the detection cell, and a power evaluation unit adapted for determining an actual power dissipation in the detection cell volume. The voltage control circuitry further comprises a control unit adapted for comparing the actual power dissipation with a desired power dissipation, and for regulating the power supply's voltage in a way that the actual power dissipation is driven towards the desired power dissipation.
Abstract: A method of processing an RNA sample is provided. In certain embodiments, the method may comprise: a) obtaining a fragmented RNA sample comprising: i. RNA fragments of long RNA molecules; and ii. unfragmented short RNA; and b) contacting said fragmented RNA sample with a first adaptor in the presence of a RtcB ligase, thereby producing a ligated RNA sample comprising adaptor-ligated fragments of long RNA. A kit for performing the method is also provided.
Abstract: A porous layer open tubular (PLOT) column includes capillary tubing; one or two particle traps disposed inside one or two end sections of the capillary tubing; and a stationary phase comprising a porous or non-porous material coated inside a main section of the capillary tubing. A method for preparing a porous layer open tubular (PLOT) column includes preparing one or two particle traps inside one or two end sections of a capillary tubing; and preparing a stationary phase comprising a layer of a porous material coated inside a main section of the capillary.
Abstract: Aspects of the invention include 2? protected nucleoside monomers that are protected at the 2? site with thiocarbon protecting groups. Thiocarbon protecting groups of interest include thiocarbonate, thionocarbonate, dithiocarbonate groups, as well as thionocarbamate protecting groups. Aspects of the invention further include nucleic acids that include the protecting groups of the invention, as well as methods of synthesizing nucleic acids using the protecting groups of the invention.
Type:
Grant
Filed:
May 31, 2012
Date of Patent:
June 30, 2015
Assignees:
Agilent Technologies, Inc., The Regents of the University of Colorado Denver
Inventors:
Douglas J. Dellinger, Agnieszka B. Sierzchala, John Turner, Joel Myerson, Zoltan Kupihar, Fernando Ferreira, Marvin H. Caruthers, Geraldine F. Dellinger
Abstract: A filter assembly includes a housing and filter elements. The housing includes internal chambers between first and second parallel outside surfaces, fluid inlet bores, and fluid outlet bores. Each internal chamber includes a filter element that partitions the internal chamber into an inlet chamber section and an outlet chamber section. The housing establishes a plurality of fluid flow channels from the inlet bores, through the inlet chamber sections, through the filter elements, through the outlet chamber sections and to the outlet bores, respectively. Each fluid channel includes a transverse fluid flow component in the inlet chamber section and the outlet chamber section. The filter assembly may be loaded into a filtering apparatus such that a plurality of separate fluid flow channels is established through the filter assembly.
Abstract: Ion guides for use in mass spectrometry (MS) systems are described. The ion guides are configured to provide a reflective electrodynamic field and a direct current (DC or static) electric field to provide ion beams that are more spatially confined with a comparatively large mass range. Some ion guides are provided between the ion source and the first stage vacuum chamber of the MS system.
Abstract: A Vacuum Fired and Brazed (“VFB”) anode array element for use in an ion pump is described. The VFB anode array element includes a first VFB conduit anode element and second VFB conduit anode element, wherein the second VFB conduit anode element is adjacent the first VFB conduit anode element. The first VFB conduit anode element is vacuum brazed together with second VFB conduit anode element.
Abstract: A single-piece ferrule for a fitting for coupling a capillary to another component of a fluidic device, wherein the ferrule comprises a ferrule body, wherein the ferrule body has a lumen configured for receiving at least a part of the capillary, wherein the ferrule body has a tapering front part configured for forming a sealed connection with a housing of the fitting, wherein a back side of the tapering front part has an annular undercut.
Abstract: A supporting plate of a device is suggested. The device has at least one component and a housing for at least partly protecting the component. The supporting plate has at least one receiving element adapted for accepting the at least one component of the device in at least one of the following manners: in a form-closed manner, in a force-closed manner. The supporting plate is part of the housing.
Abstract: Devices and methods are provided for reducing matrix effects in protein precipitated bioanalytical samples comprising: a support, and a sorbent associated with the support capable of binding matrix interfering agents present in the bioanalytical sample, wherein the device further comprises filtering means for removing precipitated protein particles. The filtering means is a size exclusion filter or a polymeric or inorganic monolith having a maximum pore size less than or equal to the diameter of the particles to be removed from the sample, and can be integral with the sorbent or associated with the sorbent. The sorbent is characterized by sufficient selectivity between the matrix interfering agents and analytes of interest to provide retention of the matrix interfering agents while providing elution of the analytes of interest (e.g., a reversed phase or a polar modified reversed phase).
Abstract: The invention relates to compositions and methods directed to chimeric DNA polymerases, which comprise a mutated DNA binding polypeptide domain and a mutated or wild-type DNA polymerase polypeptide domain.
Abstract: An optical emission spectrometer system includes a light source and a dichroic beam combiner. The light source emits first light in a first direction and second light in a second direction different from the first direction. The dichroic beam combiner receives the first light via a first light path and the second light via a second light path, reflects a portion the first light into an entrance aperture of a light detection and measurement apparatus, and transmits a portion of the second light into the entrance aperture, enabling analysis and measurement of both first and second light characteristics simultaneously. The portion of the first light reflected into the entrance aperture predominately has wavelengths in a first range of wavelengths and the portion of the second light transmitted into the entrance aperture predominately has wavelengths in a second range of wavelengths, different from the first range of wavelengths.
Type:
Application
Filed:
February 4, 2015
Publication date:
May 21, 2015
Applicant:
AGILENT TECHNOLOGIES, INC.
Inventors:
Michael Bolles, Yin Sheng Sun, Lindsay Buck, Glyn Russell
Abstract: An optical absorption spectrometry system includes first and second light sources, a dichroic beam combiner and a wavelength selective module. The first light source emits first light having first wavelengths within a first wavelength range, and the second light source emits second light having second wavelengths within a second wavelength range different from the first wavelength range. The dichroic beam combiner includes a predetermined first reflectance/transmission transition region, the dichroic beam combiner being configured to transmit a first portion of the first light and to reflect a second portion of the second light to provide combined light. The wavelength selective module is configured to disperse the combined light received at an entrance aperture, to select a sample wavelength range of the dispersed light as sample light, and to output the sample light having the selected sample wavelength range from an exit aperture for illuminating a sample.
Abstract: A chromatography column is prepared with a stationary phase comprising a deuterated poly(ethyleneglycol), or other deuterated polymer. Formation of the stationary phase can be performed using exactly the same methodology as used when forming a stationary phase with the equivalent non-deuterated polymer. The deuterated poly(ethyleneglycol), or other deuterated polymer, preferably has increased thermal stability as compared to non-deuterated poly(ethyleneglycol), or equivalent non-deuterated polymer. This reduces bleeding of the stationary phase during gas chromatography and allows the use of greater operating temperatures.
Abstract: A photon source includes a plasma source for generating plasma and a photon guide through which the plasma travels. The photon guide includes an inner surface configured for reflecting photons emitted from the plasma. As the plasma travels through the photon guide, plasma electrons and ions recombine at the inner surface, whereby the predominant species emitted from an outlet of the photon guide are the photons and neutral particles, with few or no plasma electrons and ions being emitted.
Abstract: A method for semi-automatically generating configuration information for a gas chromatograph uses an identification device reader of the gas chromatograph to 1) determine a presence and location of sample flow component identification devices in or on identification device holders that hold the sample flow component identification devices; 2) read information from sample flow component identification devices held in the identification device holders; and 3) output configuration information for the gas chromatograph. The configuration information is based on the presence and location of particular sample flow component identification devices in or on particular identification device holders, and on associations of particular identification device holders with particular sample flow component connections to the gas chromatograph. The configuration information indicates if and how sample flow components are connected to the gas chromatograph.
Abstract: A time-of-flight mass spectrometry (TOF MS) system includes an ion deflector, ion extractor, a flight tube, and a detector. The deflector may be disposed in the flight tube or outside the flight tube upstream of the extractor. The deflector deflects ions away from a main flight path such that the defected ions are not detected.