Patents Assigned to Allegro Microsystems, LLC
-
Patent number: 11946985Abstract: An electronic circuit for measuring an angle and an intensity of an external magnetic field, includes: first and second magnetic field sensing units having sensing axes substantially orthogonal to each other; a voltage generator supplying a synchronization signal, a first voltage waveform to the first magnetic field sensing unit and a second voltage waveform to the second magnetic field sensing unit; a signal conditioning unit configured for adding the first and second sensing output signals and outputting a conditioned signal. The first and second voltage waveforms have substantially the same amplitude and frequency and are phase shifted by about 90° with respect to each other. The conditioned signal and the synchronization signal are inputted into a magnetic field angle detection unit configured for measuring a phase shift between the conditioned signal and the synchronization signal and for determining the angle of the external magnetic field from the measured phase shift.Type: GrantFiled: March 19, 2020Date of Patent: April 2, 2024Assignee: Allegro MicroSystems, LLCInventors: Andrey Timopheev, Ali Alaoui, Evgeny Burmistrov
-
Patent number: 11942831Abstract: Method and apparatus for providing a motor controller/driver integrated circuit package having diagnostic processing of signal(s) from a magnetic field sensor positioned in relation to a motor. The sensor signal may have a first voltage range corresponding to a valid high state and a second voltage range corresponding to a valid low state. A diagnostic module can process the received signal from the magnetic field sensor to determine whether the received signal has a voltage level within the first or second voltage ranges. An output module may generate an output signal having a state based on the whether the received signal has a voltage level within the first or second voltage ranges.Type: GrantFiled: July 22, 2020Date of Patent: March 26, 2024Assignee: Allegro MicroSystems, LLCInventors: Ryan J. Metivier, Daniel Jacques
-
Patent number: 11940470Abstract: A substrate, comprising one or more first conductive layers, one or more second conductive layers, and a dielectric material that is arranged to encapsulate, at least in part, the first conductive layers and the second conductive layers. The one or more second conductive layers are electrically coupled to the first conductive layers. The first conductive layers and the second conductive layers are arranged to form a conductor. The first conductive layers are arranged to define a first rift in the conductor.Type: GrantFiled: May 31, 2022Date of Patent: March 26, 2024Assignee: Allegro MicroSystems, LLCInventors: Loïc André Messier, Simon E. Rock, Yannick Vuillermet
-
Patent number: 11933669Abstract: Described herein is a method and apparatus for an optical system configured to output redundant outputs, where the optical system includes at least one optical device configured to receive an optical signal; at least one optical transducer, wherein each at least one optical transducer is configured to receive the optical signal from the at least one optical device and convert the optical signal to an electrical signal; and at least one electronic device configured to receive each electrical signal and output the redundant outputs.Type: GrantFiled: February 16, 2022Date of Patent: March 19, 2024Assignee: Allegro MicroSystems, LLCInventors: Stephen A. Marshall, Logan G. Stewart, Michael Munroe
-
Publication number: 20240085463Abstract: In one aspect, a sensor includes a first metal layer portion and a second metal layer portion separated by an insulator material; a conductive material layer in electrical contact with the first metal layer portion and the second metal layer portion; and a tunnel magnetoresistance (TMR) element positioned on and in electrical contact with the conductive material layer. A first current is configured to flow from the first metal layer portion, through the conductive material layer, to the second metal layer portion, and a second current is configured to flow from the first metal layer portion, through the conductive material layer, through the TMR element, and exiting through a top of the TMR element.Type: ApplicationFiled: September 12, 2022Publication date: March 14, 2024Applicant: Allegro MicroSystems, LLCInventors: Samridh Jaiswal, Paolo Campiglio, Sundar Chetlur, Maxim Klebanov, Yen Ting Liu
-
Patent number: 11927650Abstract: Magnetic-field sensors use magnetic closed-loops with magnetic-field sensing elements, e.g., magnetoresistance (MR) elements, and diagnostic circuitry operating in a separate frequency band than that used for magnetic field sensing. The MR elements can be used in a first stage of a high gain amplifier which provides a feedback signal to a feedback coil in a feedback configuration to provide a magnetic feedback field. The magnetic feedback field attenuates the sensed magnetic field so that the MR elements operate in a linear range. Magnetic stray field effects and any limited linearity of magnetic-field sensing elements can be masked by the loop gain of the closed loop. For a magnetic closed-loop, a negative feedback configuration can be used or a positive feedback configuration can be used with a loop-gain of less than one. The diagnostic signal traverses the closed-loop and provides information regarding correct or incorrect functioning of the loop components.Type: GrantFiled: April 18, 2022Date of Patent: March 12, 2024Assignee: Allegro MicroSystems, LLCInventor: Hernán D. Romero
-
Publication number: 20240074322Abstract: In one aspect, a method includes depositing magnetoresistance (MR) layers of a MR element on a semiconductor structure; depositing a first hard mask on the MR layers; depositing and patterning a first photoresist on the first hard mask using photolithography to expose portions of the first hard mask; etching the exposed portions of the first hard mask; etching a portion of the MR layers using the first hard mask; depositing a second hard mask on a first capping layer; depositing and patterning a second photoresist on the second hard mask using photolithography to expose portions of the second hard mask; etching the exposed portions of the second hard mask; etching the MR element using the second hard mask; etching portions of the first hard mask down to a top MR layer of the MR element; and depositing a conducting material on the top MR layer to form an electroconductive contact.Type: ApplicationFiled: August 30, 2022Publication date: February 29, 2024Applicant: Allegro MicroSystems, LLCInventors: Maxim Klebanov, Yen Ting Liu, Sundar Chetlur, Paolo Campiglio, Samridh Jaiswal
-
Publication number: 20240063310Abstract: A Schottky diode includes a substrate having a first type dopant, a buried layer within the substrate and having a second type dopant, an epitaxial layer above the buried layer and having the second type dopant, a plurality of rings within the epitaxial layer and having the first type dopant, wherein the plurality of rings comprises an L-shaped ring, a shallow trench isolation (STI) layer at the top region of the epitaxial layer, an anode, a cathode spaced from the anode by the STI layer, and wherein the buried layer has an open region substantially vertically aligned with the anode.Type: ApplicationFiled: August 16, 2022Publication date: February 22, 2024Applicant: Allegro MicroSystems, LLCInventors: Yu-Chun Li, Felix Palumbo, Chung C. Kuo, Thomas S. Chung, Maxim Klebanov
-
Publication number: 20240047314Abstract: A current sensor integrated circuit package includes a primary conductor having an input portion and an output portion, both with reduced area edges. Secondary leads each have an exposed portion and an elongated portion that is offset with respect to the exposed portion. A semiconductor die is disposed adjacent to the primary conductor on an insulator portion and at least one magnetic field sensing element is supported by the semiconductor die. A package body includes a first portion enclosing the semiconductor die and a portion of the primary conductor and a second portion enclosing the elongated portion of the plurality of secondary leads. The first package body portion has a first width configured to expose the input and output portions of the primary conductor and the second package body portion has a second width between a first and second package body side edges that is larger than the first width.Type: ApplicationFiled: October 20, 2023Publication date: February 8, 2024Applicant: Allegro MicroSystems, LLCInventors: Robert A. Briano, Shixi Louis Liu
-
Publication number: 20240044946Abstract: A sensor package comprising a lead frame, a current sensor die, and an interposer. The lead frame includes: (i) a primary conductor, (ii) a plurality of secondary leads, and (iii) a layer of dielectric material that is disposed between the primary conductor and the plurality of secondary leads. The current sensor die includes one or more sensing elements. The current sensor die is configured to measure a level of electrical current through the primary conductor of the lead frame. The interposer is disposed over the layer of dielectric material. The interposer includes a plurality of conductive traces that are configured to couple each of a plurality of terminals of the current sensor die to a respective one of the plurality of secondary leads.Type: ApplicationFiled: August 5, 2022Publication date: February 8, 2024Applicant: Allegro MicroSystems, LLCInventors: Robert A. Briano, Michael C. Doogue, William P. Taylor
-
Publication number: 20240045622Abstract: Configurable variable-length shift register circuits include a group of flip-flops connected in a serial configuration. The plurality of flip-flops is connected to a serial data-in line and a clock line. Each flip-flop can include a data input, a clock input configured to receive a clock signal from the clock line, and a data output. The plurality of flip-flops can include a serial data-out line. The circuit includes a plurality of multiplexers connected to the plurality of flip-flops to enable a desired number of flip-flops for an application. A nonvolatile memory can be connected to the plurality of multiplexers and configured to receive a register-length indication, where the register-length indication corresponds to a selected number of flip-flops selected for enablement for a given application.Type: ApplicationFiled: August 2, 2022Publication date: February 8, 2024Applicant: Allegro MicroSystems, LLCInventor: Matthew Hein
-
Patent number: 11892524Abstract: A magnetic field sensor includes a magnetic field sensing element to generate a magnetic field signal indicative of a sensed magnetic field, a modulator to modulate the magnetic field signal at a chopping frequency, a front end amplifier coupled to receive the magnetic field signal and generate an amplified signal, and a demodulator configured to demodulate the amplified signal at the chopping frequency. The sensor further includes a low pass filter to process the amplified signal and generate a low pass filtered signal and a Schmitt trigger circuit. The Schmitt trigger circuit includes a comparator having a first input coupled to receive the low pass filtered signal, a second input coupled to receive a reference signal, and an output at which a comparator output signal is provided. The comparator is configured to perform a plurality of comparisons within a chopping time period that is the inverse of the chopping frequency.Type: GrantFiled: October 13, 2022Date of Patent: February 6, 2024Assignee: Allegro MicroSystems, LLCInventors: Ezequiel Rubinsztain, Octavio H. Alpago, Franco Noel Martin Pirchio
-
Patent number: 11892476Abstract: Current sensor packages are described including a leadframe configured to carry a current to be sensed and a current sensor that is electrically isolated from the leadframe. The current sensor is disposed adjacent to a first portion of the leadframe that includes a plurality of notches. An encapsulating material is configured to encapsulate the current sensor and at least a part of the first portion of the leadframe that is adjacent to the current sensor and includes the plurality of notches. The current sensor includes a substrate, a first magnetic field sensing element that is formed on the substrate, and a second magnetic field sensing element that is formed on the substrate. The first magnetic field sensing element and the second magnetic field sensing element are disposed on opposite sides of a central axis of the first portion of the leadframe.Type: GrantFiled: February 15, 2022Date of Patent: February 6, 2024Assignee: Allegro MicroSystems, LLCInventors: Simon E. Rock, Thomas Kerdraon, Yannick Vuillermet, Loïc André Messier, Andreas P. Friedrich
-
Patent number: 11894844Abstract: Rapid-data-transfer sensor arrays include a controller and a plurality of sensor integrated circuits (ICs) connected in series and configured to periodically take measurements and provide measurement data to the controller as serial data. A sensor IC includes a transducer, a shift register, a serial-data-in (SDI) pin, a serial-data-out (SDO) pin, a clock pin, and a bi-directional start/done (ST/DN) pin. The sensor IC includes a power regulation circuit configured to selectively supply power for a sleep mode and an active mode for recording data and an internal shift register. When finished with the measurement, the sensor IC is configured to provide measurement data to the shift register for transfer to the controller. The controller is configured to initiate serial transfer of data from each of the shift registers of the first plurality of sensor ICs to the controller. Examples include a 2D array.Type: GrantFiled: August 1, 2022Date of Patent: February 6, 2024Assignee: Allegro MicroSystems, LLCInventor: Matthew Hein
-
Publication number: 20240039538Abstract: Rapid-data-transfer sensor arrays include a controller and a plurality of sensor integrated circuits (ICs) connected in series and configured to periodically take measurements and provide measurement data to the controller as serial data. A sensor IC includes a transducer, a shift register, a serial-data-in (SDI) pin, a serial-data-out (SDO) pin, a clock pin, and a bi-directional start/done (ST/DN) pin. The sensor IC includes a power regulation circuit configured to selectively supply power for a sleep mode and an active mode for recording data and an internal shift register. When finished with the measurement, the sensor IC is configured to provide measurement data to the shift register for transfer to the controller. The controller is configured to initiate serial transfer of data from each of the shift registers of the first plurality of sensor ICs to the controller. Examples include a 2D array.Type: ApplicationFiled: August 1, 2022Publication date: February 1, 2024Applicant: Allegro MicroSystems, LLCInventor: Matthew Hein
-
Patent number: 11885646Abstract: Methods and apparatus for a detector system having a photodetector and an amplifier to amplify the photodetector signal. A discriminator generates an active output signal when the output from the amplifier is greater than a threshold. An injection circuit is coupled to the input of the amplifier. The injection circuit is configured to selectively inject a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system.Type: GrantFiled: August 12, 2021Date of Patent: January 30, 2024Assignee: Allegro MicroSystems, LLCInventors: Charles Myers, Shunming Sun, Adam Lee
-
Patent number: 11885645Abstract: A sensor includes a sensing element configured to generate a sensing element output signal indicative of a sensed parameter and a signal path responsive to the sensing element output signal and having at least one of an adjustable gain or an adjustable offset, wherein the signal path is configured to generate a sensor output signal indicative of the sensed parameter. A supply voltage detector is configured to generate a supply voltage signal indicative of which of a plurality of voltage ranges a supply voltage of the sensor falls within and at least one of the adjustable gain or the adjustable offset is adjustable in response to the supply voltage signal.Type: GrantFiled: June 17, 2021Date of Patent: January 30, 2024Assignee: Allegro MicroSystems, LLCInventors: Alexander Latham, Evan Shorman, Michael C. Doogue
-
Patent number: 11885866Abstract: Auto-calibrating current sensor integrated circuits (ICs) are configured for mounting at a position relative to a conductor. The auto-calibrating current sensor ICs can include a plurality of magnetic field sensing elements disposed at different locations within the integrated circuit, respectively, and can be configured to measure a magnetic field produced by a current carried by the conductor. The auto-calibrating sensors can include an electromagnetic model of the IC and the conductor. The model can be operative to determine a magnetic field at points in space due to a given current in the conductor at a known location of the conductor from the IC, and also the inverse situation of determining an unknown current and/or location of the conductor based on measurements of a magnetic field at known locations in space due to an unknown current in the conductor. Related auto-calibration methods are also described.Type: GrantFiled: May 31, 2022Date of Patent: January 30, 2024Assignee: Allegro MicroSystems, LLCInventors: Yannick Vuillermet, Loïc André Messier, Simon E. Rock, Maxwell McNally, Alexander Latham, Andreas P. Friedrich
-
Publication number: 20240027560Abstract: Auto-calibrating current sensor integrated circuits (ICs) are configured for mounting at a position relative to a conductor. The auto-calibrating current sensor ICs can include a plurality of magnetic field sensing elements disposed at different locations within the integrated circuit, respectively, and can be configured to measure a magnetic field produced by a current carried by the conductor. The auto-calibrating sensors can include an electromagnetic model of the IC and the conductor. The model can be operative to determine a magnetic field at points in space due to a given current in the conductor at a known location of the conductor from the IC, and also the inverse situation of determining an unknown current and/or location of the conductor based on measurements of a magnetic field at known locations in space due to an unknown current in the conductor. Related auto-calibration methods are also described.Type: ApplicationFiled: October 4, 2023Publication date: January 25, 2024Applicant: Allegro MicroSystems, LLCInventors: Yannick Vuillermet, Loïc André Messier, Simon E. Rock, Maxwell McNally, Alexander Latham, Andreas P. Friedrich
-
Publication number: 20240027547Abstract: Methods and apparatus for a magnetoresistive (MR) sensor a free layer with a thickness of the CoFeB material to produce out-of-plane sensing for the sensor and a reference layer magnetically coupled to the free layer. A dusting layer of an oxide material is disposed on the free layer to achieve perpendicular magnetic anisotropy for an interface of the oxide layer and the free layer for a desired sensitivity for the sensor.Type: ApplicationFiled: July 19, 2022Publication date: January 25, 2024Applicant: Allegro MicroSystems, LLCInventors: Samridh Jaiswal, Paolo Campiglio