Patents Assigned to ams AG
  • Patent number: 11535512
    Abstract: The disclosure relates to a method for manufacturing a planarized etch-stop layer, ESL, for a hydrofluoric acid, HF, vapor phase etching process. The method includes providing a first planarized layer on top of a surface of a substrate, the first planarized layer having a patterned and structured metallic material and a filling material. The method further includes depositing on top of the first planarized layer the planarized ESL of an ESL material with low HF etch rate, wherein the planarized ESL has a low surface roughness and a thickness of less than 150 nm, in particular of less than 100 nm.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 27, 2022
    Assignee: AMS AG
    Inventors: Alessandro Faes, Sophie Guillemin, Joerg Siegert, Karl Tuttner
  • Patent number: 11513050
    Abstract: A particulate matter sensor including a light source, a photodetector, and a particle filter. The light source and the photodetector are arranged in the same plane as the particle filter. Integrated particulate matter sensors are operable to detect particulate matter by measuring an optical characteristic of a filter.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 29, 2022
    Assignee: ams AG
    Inventors: Alexander Bergmann, Martin Kraft
  • Patent number: 11510012
    Abstract: An integrated optical transducer for detecting dynamic pressure changes comprises a micro-electro-mechanical system, MEMS, die having a MEMS diaphragm with a first side exposed to the dynamic pressure changes and a second side. The transducer further comprises an application specific integrated circuit, ASIC, die having an evaluation circuit configured to detect a deflection of the MEMS diaphragm, in particular of the second side of the MEMS diaphragm. The MEMS die is arranged with respect to the ASIC die such that a gap with a gap height is formed between the second side of the diaphragm and a first surface of the ASIC die and the MEMS diaphragm, the ASIC die and a suspension structure of the MEMS die delineate a back volume of the integrated optical transducer.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 22, 2022
    Assignee: AMS AG
    Inventors: Goran Stojanovic, Colin Steele, Erik Jan Lous, Anderson Pires Singulani
  • Patent number: 11486851
    Abstract: A gas sensor comprises an electrochemical film, a plurality of electrodes coupled with the electrochemical film and a semiconductor wafer coupled with the plurality of electrodes. A passivation layer is formed between the electrochemical firm and the semiconductor wafer and a dielectric layer is coupled between the electrochemical film and the semiconductor wafer.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 1, 2022
    Assignee: ams AG
    Inventors: Filip Frederix, Erik Jan Lous
  • Patent number: 11476393
    Abstract: A phosphor-converted light-emitting device comprising an emitter device configured to emit a spectrum of electromagnetic radiation, a conversion layer comprising at least one phosphor, the conversion layer being configured to convert electromagnetic radiation of the spectrum into electromagnetic radiation of a different further spectrum, and a blocking layer configured to attenuate electromagnetic radiation outside the further spectrum, the conversion layer being arranged between the emitter device and the blocking layer.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 18, 2022
    Assignee: AMS AG
    Inventors: Gunter Siess, Julius Komma, Peter Roentgen, Martin Salt
  • Patent number: 11477581
    Abstract: A micro-electro-mechanical system, MEMS, microphone assembly comprises an enclosure defining a first cavity, and a MEMS microphone arranged inside the first cavity. The microphone comprises a first die with bonding structures and a MEMS diaphragm, and a second die having an application specific integrated circuit, ASIC. The second die is bonded to the bonding structures such that a gap is formed between a first side of the diaphragm and the second die, with the gap defining a second cavity. The first side of the diaphragm is interfacing with the second cavity and a second side of the diaphragm is interfacing with the environment via an acoustic inlet port of the enclosure. The bonding structures are arranged such that pressure ventilation openings are formed that connect the first cavity and the second cavity.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: October 18, 2022
    Assignee: AMS AG
    Inventors: Goran Stojanovic, Colin Steele, Simon Mueller, Thomas Froehlich, Erik Jan Lous, Anderson Pires Singulani
  • Patent number: 11474039
    Abstract: The chemical sensing device comprises a substrate of semiconductor material, integrated circuit components and a photodetector formed in the substrate, a dielectric on the substrate, a wiring in the dielectric, and a source of electromagnetic radiation, a waveguide and a fluorescent sensor layer arranged in or above the dielectric. A portion of the waveguide is arranged to allow the electromagnetic radiation emitted by the source of electromagnetic radiation to be coupled into the waveguide. A further portion of the waveguide is arranged between the photodetector and the fluorescent sensor layer.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: October 18, 2022
    Assignee: ams AG
    Inventors: Martin Sagmeister, Victor Sidorov, Jochen Kraft
  • Patent number: 11473932
    Abstract: A position encoder arrangement is configured to detect the position of a movable source based on a source field, which is a magnetic field or an electric field, emitted by the source. The position encoder arrangement includes a number of sensor elements that are evenly distributed and each is configured to provide a sensor value based on the source field at the sensor element's location. The arrangement further includes an evaluation unit that is configured to determine a fine position value for the position of the movable source, and to determine from the sensor values a trustworthiness of the fine position value and/or an error flag indicating whether a failure status of the position encoder arrangement is present.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: October 18, 2022
    Assignee: AMS AG
    Inventors: Stephan Michelitsch, Gerhard Oberhoffner
  • Publication number: 20220328551
    Abstract: The system-on-chip camera comprises a semiconductor body with an integrated circuit, a sensor substrate, sensor elements arranged in the sensor substrate according to an array of pixels, a light sensor in the sensor substrate apart from the sensor elements, and a lens or an array of lenses on a surface of incidence. Filter elements, which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: ams AG
    Inventors: Martin SCHREMS, Thomas STOCKMEIER
  • Publication number: 20220321862
    Abstract: A photodetector in semiconductor material is provided with a first transfer gate between the photodetector and a first diffusion region in the semiconductor material, a second transfer gate between the photodetector and a second diffusion region in the semiconductor material, a capacitor connected between the first diffusion region and the second diffusion region, a first switch connected between the first diffusion region and a first reference voltage, and a second switch connected between the second diffusion region and a second reference voltage.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 6, 2022
    Applicant: ams AG
    Inventor: Guy MEYNANTS
  • Patent number: 11448730
    Abstract: An optical sensor arrangement for time-of-flight comprises a first and a second cavity separated by an optical barrier and covered by a cover arrangement. An optical emitter is arranged in the first cavity, a measurement and a reference photodetector are arranged in the second cavity. The cover arrangement comprises a plate and layers of material arranged on an inner main surface thereof. The layers comprise an opaque coating with a first and second aperture above the first cavity, and with a third and fourth aperture above the second cavity. The measurement photodetector is configured to detect light entering the second cavity through the fourth aperture. The second and the third aperture establish a reference path for light from the emitter to the reference photodetector.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: September 20, 2022
    Assignee: AMS AG
    Inventors: Harald Etschmaier, Rainer Minixhofer, Georg Roehrer
  • Patent number: 11418208
    Abstract: A method for light-to-digital conversion includes setting a time integrator circuit into a reference condition and starting to integrate charge from a sensor device for the duration of an integration time. An integration signal is generated and is indicative of the integrated charge. The integration signal is compared with an adjustable reference signal. A first count is generated when the comparison indicates that the integration signal has reached an integration range, wherein the integration range is defined by a low and a high voltage. A second count is generated when the comparison indicates that the integration signal has reached the adjustable reference signal. The adjustable reference signal is incremented in discrete steps when a second count has been generated. Then, the time integrator circuit is reset into the reference condition, when the comparison indicates that the integration signal has reached the integration range.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: August 16, 2022
    Assignee: AMS AG
    Inventors: Rohit Ranganathan, Ravi Kumar Adusumalli, Dinesh Kuruganti
  • Patent number: 11410611
    Abstract: An apparatus includes a display screen, an ambient light sensor disposed behind the display screen, and an electronic control unit operable to control a brightness of the display screen based on a duty cycle of a PWM signal. The electronic control unit is operable to sample an output of the ambient light sensor, identify a pair of consecutive samples of the ambient light sensor output that represent a greatest difference in magnitudes of their values, and to estimate a brightness of the display screen based on the difference.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: August 9, 2022
    Assignee: AMS AG
    Inventors: George Richard Kelly, Pradeep Hegde
  • Patent number: 11411035
    Abstract: The system-on-chip camera comprises a semiconductor body (1) with an integrated circuit (40), a sensor substrate (2), sensor elements (3) arranged in the sensor substrate according to an array of pixels, a light sensor (4) in the sensor substrate apart from the sensor elements, and a lens or an array of lenses (15) on a surface of incidence (30). Filter elements (11, 12, 13), which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: August 9, 2022
    Assignee: AMS AG
    Inventors: Martin Schrems, Thomas Stockmeier
  • Patent number: 11405602
    Abstract: A photodetector in semiconductor material is provided with a first transfer gate between the photodetector and a first diffusion region in the semiconductor material, a second transfer gate between the photodetector and a second diffusion region in the semiconductor material, a capacitor connected between the first diffusion region and the second diffusion region, a first switch connected between the first diffusion region and a first reference voltage, and a second switch connected between the second diffusion region and a second reference voltage.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: August 2, 2022
    Assignee: AMS AG
    Inventor: Guy Meynants
  • Patent number: 11367804
    Abstract: A directional photodetector comprises a photosensitive element and a light selector. The photosensitive element comprises a single-photon avalanche diode, SPAD, or an array of SPADs or SPAD array. The light selector is arranged on or above the photosensitive element, in particular on or above an active surface of the photosensitive element. The light selector is configured to restrict a field of view of the photosensitive element at least for light with a wavelength within a specified wavelength range. The light selector is configured to restrict the field of view by predominantly passing light with a direction of incidence within a range of passing directions of the light selector.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: June 21, 2022
    Assignee: AMS AG
    Inventor: Robert Kappel
  • Patent number: 11367672
    Abstract: A semiconductor device includes a semiconductor body, an electrically conductive via which extends through at least a part of the semiconductor body, and where the via has a top side and a bottom side that faces away from the top side, an electrically conductive etch-stop layer arranged at the bottom side of the via in a plane which is parallel to a lateral direction, where the lateral direction is perpendicular to a vertical direction given by the main axis of extension of the via, and at least one electrically conductive contact layer at the bottom side of the via in a plane which is parallel to the lateral direction. The etch-stop layer is arranged between the electrically conductive via and the contact layer in the vertical direction, the lateral extent in the lateral direction of the etch-stop layer amounts to at least 2.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: June 21, 2022
    Assignee: AMS AG
    Inventors: Jochen Kraft, Georg Parteder, Anderson Pires Singulani, Raffaele Coppeta, Franz Schrank
  • Patent number: 11355653
    Abstract: The SPAD device comprises a single-photon avalanche diode and a further single-photon avalanche diode having breakdown voltages, the single-photon avalanche diodes being integrated in the same device. The breakdown voltages are equal or differ by less than 10%. The single-photon avalanche diode is configured to enable to induce triggering or to have a dark count rate that is higher than the dark count rate of the further single-photon avalanche diode.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: June 7, 2022
    Assignee: AMS AG
    Inventors: Georg Röhrer, Robert Kappel, Nenad Lilic
  • Patent number: 11355386
    Abstract: A method for manufacturing a semiconductor device is provided. The method comprises the steps of providing a semiconductor body, forming a trench in the semiconductor body in a vertical direction which is perpendicular to the main plane of extension of the semiconductor body, and coating inner walls of the trench with an isolation layer. The method further comprises the steps of coating the isolation layer at the inner walls with a metallization layer, coating a top side of the semiconductor body, at which the trench is formed, at least partially with an electrically conductive contact layer, where the contact layer is electrically connected with the metallization layer, coating the top side of the semiconductor body at least partially and the trench with a capping layer, and forming a contact pad at the top side of the semiconductor body by removing the contact layer and the capping layer at least partially. Furthermore, a semiconductor device is provided.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: June 7, 2022
    Assignee: AMS AG
    Inventors: Georg Parteder, Jochen Kraft, Raffaele Coppeta
  • Patent number: 11344234
    Abstract: A circuit arrangement for an optical monitoring system comprises a driver circuit which is configured to generate at least one driving signal for driving the light source. A detector terminal is arranged for receiving a detector current from an optical detector. A gain stage is connected at its input side to the driver circuit for receiving the driving signal and generates a noise signal depending on the driving signal. A processing unit is configured to generate an output signal depending on the detector current and the noise signal.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: May 31, 2022
    Assignee: AMS AG
    Inventors: Peter Trattler, Karl Georg Waser, Herbert Lenhard