Abstract: An embodiment of the present invention may be directed to a multi channel imaging system. The multi channel imaging system may include an input for a light signal and a plurality of channel circuits. Each of the channel circuits may have an analog signal processing chain converting some portion of the light signal into to a digital representation, the plurality of channel circuits may operate in parallel. The multi channel imaging system may further comprise at least one dither circuit coupled to a point in at least one of the analog signal processing chains to add dither.
Abstract: Method to verify proper operation of battery monitor shift register(s). The method may be implemented on an individual battery monitor or within a system of battery monitors. Battery monitor shift register(s) may be configured to store predetermined test patterns upon start up or reset. The contents of the battery monitor shift registers may be shifted out serially to a processor or controller, which may compare the read out data to a local copy of the predetermined test pattern. If the patterns do not match, the processor or controller may indicate an error condition.
Abstract: A packaged microphone has a base with a top face, a lid coupled to the base and forming an interior, and a MEMS microphone (i.e., a die or chip) secured to the top face of the base within the interior. The packaged microphone also includes a circuit chip secured to the top face of the base within the interior. The circuit chip has a top surface with a top pad, a bottom surface with a bottom pad, and a via. The bottom pad is electrically connected to the base, and the via electrically connects the top pad with the bottom pad. A wire bond is connected between the MEMS microphone and the top pad on the circuit chip. The MEMS microphone is electrically connected to the bottom pad and the base through the via.
Abstract: An error correction method corrects and replaces erroneous digital signal samples (having N companded bits) in a receiver after ascertaining by parity check that a sample is erroneous. The method chooses M MSBs where M is less than or equal to N, and produces M test samples, each test sample being obtained by inverting a single bit from the M bits, keeping other bits unaltered. Each test sample is expanded and passed through a selected low pass filter (e.g., 15 kHz) to obtain a filtered output and a differential value between the test sample and its filtered output. The test sample producing the least differential value is chosen to replace the erroneous signal sample. The technique is applicable in NICAM demodulators receiving 14 bit sample signals (at 32 kHz) companded to (N) 10 bits from which (M) 6 MSB parity encoded bits are chosen for producing test samples.
Abstract: Apparatus and methods reduce the likelihood of amplifier saturation due to propagated DC offsets, and reduce the recover from saturated stated when such saturation occurs. Advantageously, these attributes are beneficial for monitoring of bioelectric signals. A circuit uses an instrumentation amplifier connected as a high pass filter to attenuate large DC offsets and amplify small signals. The circuit can include an instrumentation amplifier electrically coupled with a first feedback circuit including at least one resistor and a second feedback circuit including an op-amp. The feedback circuit can also include a low-pass filter. The op-amp in the second feedback circuit can be configured as a non-inverting amplifier, an inverting amplifier, and/or an integrator circuit. Alternatively, the circuit can include an instrumentation amplifier with one feedback circuit including at least one resistor, and a coupling capacitor electrically coupled with a reference voltage.
Type:
Application
Filed:
January 25, 2011
Publication date:
July 26, 2012
Applicant:
ANALOG DEVICES, INC.
Inventors:
Alasdair Gordon Alexander, David James Plourde, Matthew Nathan Duff
Abstract: A class G headphone amplifier circuit with improved power efficiency and low EMI. It may use an automatic signal level detector to detect the signal level of incoming signals and determine positive and negative power supplies for headphone amplifiers accordingly. A voltage generator may generate pairs of differential output voltages at a plurality of amplitude steps, and supply to headphone amplifiers the pair with the amplitude determined by the automatic signal level detector. As a result, headphone amplifiers are biased according to the input signal level, and the multiple voltage rails may improve power efficiency and avoid clipping.
Abstract: A SOI-based MEMS device has a base layer, a device layer, and an insulator layer between the base layer and the device layer. The device also has a deposited layer having a portion that is spaced from the device layer. The device layer is between the insulator layer and the deposited layer.
Type:
Grant
Filed:
June 2, 2006
Date of Patent:
July 24, 2012
Assignee:
Analog Devices, Inc.
Inventors:
Thomas Kieran Nunan, Timothy J. Brosnihan
Abstract: A SOI-based MEMS device has a base layer, a device layer, and an insulator layer between the base layer and the device layer. The device also has a deposited layer having a portion that is spaced from the device layer. The device layer is between the insulator layer and the deposited layer.
Type:
Grant
Filed:
January 6, 2011
Date of Patent:
July 24, 2012
Assignee:
Analog Devices, Inc.
Inventors:
Thomas Kieran Nunan, Timothy J. Brosnihan
Abstract: A system and method are provided for a PTAT cell with no resistors which can operate at low power, has less sensitivity to process variation, occupies less silicon area, and has low noise. Further, a system and method are provided to scale up the reference voltage and current through a cascade of unit cells. Still further, a system and method are provided for PTAT component to be fine-tuned, advantageously providing less process variability and less temperature sensitivity.
Abstract: A drive signal for a motor-driven mechanical system has zero (or near zero) energy at an expected resonant frequency of the mechanical system. The drive signal may be provided in a series of steps according to a selected row of Pascal's triangle, wherein the number of steps equals the number of entries from the selected row of Pascal's triangle, each step has a step size corresponding to a respective entry of the selected row of Pascal's triangle, and the steps are spaced from each other according to a time constant determined by an expected resonant frequency of the mechanical system.
Type:
Grant
Filed:
September 9, 2009
Date of Patent:
July 24, 2012
Assignee:
Analog Devices, Inc.
Inventors:
Colin Lyden, Javier Calpe-Maravilla, Mark Murphy, Eoin English, Denis O'Connor
Abstract: A system and method for reducing noise in resolver-to-digital converters (RDC) using a cascaded tracking loop filter. In some embodiments, one or more tracking loop filters may be implemented in a cascade to attenuate carrier harmonic frequencies in the digitized output of an RDC. Where a plurality of tracking loop filters are implemented, the output of one tracking loop filter may be input into a successive tracking loop filter.
Abstract: Embodiments of the present invention may provide an integrated circuit that may comprise a first transistor to receive an input voltage signal at its gate and generate an output voltage signal at its drain. Further, the integrated circuit may comprise a second transistor to form an active load of the first transistor, the second transistor may have its drain and gate coupled to the drain of the first transistor. In addition, the integrated circuit may comprise a third transistor to form a current mirror with the second transistor, a fourth transistor to form an active load of the third transistor, and a fifth transistor to form a current mirror with the fourth transistor. The fifth transistor may be connected to the drain of the second transistor. The integrated circuit may form an amplifier and Gm stage of a reference buffer.
Abstract: An active RC resonator includes a first operational amplifier having first and second inputs and first and second outputs, a second operational amplifier having first and second inputs and first and second outputs, a first resistor coupled between the first input of the first operational amplifier and the second output of the second operational amplifier, a second resistor coupled between the second input of the first operational amplifier and the first output of the second operational amplifier, a third resistor coupled between the first output of the first operational amplifier and the first input of the second input of the second operational amplifier, a fourth resistor coupled between the second output of the first operational amplifier and the second input of the second operational amplifier, and at least one of 1) a first capacitor coupled between the first input of the first operational amplifier and the first output of the second operational amplifier, and a second capacitor coupled between the second
Abstract: An amplifier circuit includes a first amplifier stage having a first output node; a second amplifier stage having a second output node; and a compensation block electrically coupled between the first and second output nodes. The compensation block has a compensation capacitor electrically coupled to the first node and electrically connectable to the second node, and has an impedance electrically connectable to the compensation capacitor. The compensation capacitor is electrically coupled via a switch to the impedance such that the compensation capacitor can contribute a zero to shunt branch formed by the compensation capacitor and impedance when the compensation capacitor is disconnected from the second node.
Abstract: An apparatus and method for inter-channel data exchange in multi-channel data acquisition systems is disclosed. A multi-channel data acquisition system may include a data exchange layer coupling two or more channels of the data acquisition system. Data may be transmitted via the data exchange layer between the channels, enabling data from one channel to be processed and output by another channel. The data exchange layer may include a serial exchange layer or a parallel exchange layer.
Type:
Grant
Filed:
March 18, 2008
Date of Patent:
July 17, 2012
Assignee:
Analog Devices, Inc.
Inventors:
Ronald A. Kapusta, Jr., Hiroto Shinozaki, Katsufumi Nakamura
Abstract: A microphone system has an output and at least a first transducer with a first dynamic range, a second transducer with a second dynamic range different than the first dynamic range, and coupling system to selectively couple the output of one of the first transducer or the second transducer to the system output, depending on the magnitude of the input sound signal, to produce a system with a dynamic range greater than the dynamic range of either individual transducer. A method of operating a microphone system includes detecting whether a transducer output crosses a threshold, and if so then selectively coupling another transducer's output to the system output. The threshold may change as a function of which transducer is coupled to the system output. The system and methods may also combine the outputs of more than one transducer in a weighted sum during transition from one transducer output to another, as a function of time or as a function of the amplitude of the incident audio signal.
Type:
Grant
Filed:
May 22, 2009
Date of Patent:
July 17, 2012
Assignee:
Analog Devices, Inc.
Inventors:
Olli Haila, Kieran Harney, Gary W. Elko
Abstract: A bootstrapped switch circuit can include at least one transistor, to receive an input signal and allow the input signal to pass through as an output signal based on a control signal, and a voltage-controlled voltage source, to provide first and second voltages between a gate and a source of the at least one transistor in response to the control signal. The voltage-controlled voltage source can include a differential pair and a current source. A gate of one of the differential pair can receive the control signal and a gate of the other of the differential pair can receive a logical inverse of the control signal. The current source can provide a current to connected sources of the differential pair. The first voltage can turn on the at least one transistor and be produced in response to a first logic state of the control signal resulting in the current of the current source flowing entirely through a first one of the differential pair.
Abstract: A circuit, system, machine-readable storage medium and method for detecting the presence of a leakage path in a multi-cell voltage source is described. The system includes a detection circuit, the detection circuit having a first, second and third amplifiers, a first input of the first amplifier connected to a first terminal of the voltage source and the first input of the second amplifier connected to a second terminal of the voltage source, a second input of each of the first and second amplifiers connected to a reference capacitor, and an output of each of the first, second and third amplifiers connected to a respective first, second and third outputs of the detection circuit; and a processor having inputs connected to the first and second outputs of the detection circuit.
Abstract: A MEMS system includes an inertial sensor having sensor circuitry and management circuitry implemented with the sensor circuitry. The management circuitry includes a detection module that detects a condition of the system and a management module that coordinates the functionality of the inertial sensor and the detection module based on the detected condition.