Patents Assigned to Applied Material
  • Patent number: 11217427
    Abstract: An apparatus may include a scanner, arranged to receive an ion beam, and arranged to deliver a scan signal, defined by a scan period, to scan the ion beam between a first beamline side and a second beamline side. The apparatus may include a corrector module, disposed downstream of the scanner, and defining a variable path length for the ion beam, between the first beamline side and the second beamline side, wherein a difference in propagation time between a first ion path along the first beamline side and a second ion path along the second beamline side is equal to the scan period.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Anthony Renau
  • Patent number: 11217443
    Abstract: Embodiments disclosed herein include methods of forming high quality silicon nitride films. In an embodiment, a method of depositing a film on a substrate may comprise forming a silicon nitride film over a surface of the substrate in a first processing volume with a deposition process, and treating the silicon nitride film in a second processing volume, wherein treating the silicon nitride film comprises exposing the film to a plasma induced by a modular high-frequency plasma source. In an embodiment, a sheath potential of the plasma is less than 100 V, and a power density of the high-frequency plasma source is approximately 5 W/cm2 or greater, approximately 10 W/cm2 or greater, or approximately 20 W/cm2 or greater.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Vinayak Veer Vats, Hang Yu, Philip Allan Kraus, Sanjay G. Kamath, William John Durand, Lakmal Charidu Kalutarage, Abhijit B. Mallick, Changling Li, Deenesh Padhi, Mark Joseph Saly, Thai Cheng Chua, Mihaela A. Balseanu
  • Patent number: 11217536
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a split laser beam laser scribing process, such as a split shaped laser beam laser scribing process, to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jungrae Park, Wei-Sheng Lei, Brad Eaton, James S. Papanu, Ajay Kumar
  • Patent number: 11217462
    Abstract: A workpiece holder includes a puck, first and second heating devices in thermal communication with respective inner and outer portions of the puck, and a thermal sink in thermal communication with the puck. The first and second heating devices are independently controllable, and the first and second heating devices are in greater thermal communication with the puck, than thermal communication of the thermal sink with the puck. A method of controlling temperature distribution of a workpiece includes flowing a heat exchange fluid through a thermal sink to establish a reference temperature to a puck, raising temperatures of radially inner and outer portions of the puck to first and second temperatures greater than the reference temperature, by activating respective first and second heating devices disposed in thermal communication with the radially inner and outer portions of the puck, and placing the workpiece on the puck.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: David Benjaminson, Dmitry Lubomirsky, Ananda Seelavanth Math, Saravanakumar Natarajan, Shubham Chourey
  • Publication number: 20210404061
    Abstract: Apparatus and methods to process one or more wafers are described. A substrate is exposed to a plurality of process stations to deposit, anneal, treat and optionally etch a film in small increments to provide self-aligned growth of the film on a substrate surface.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventor: Suketu Arun Parikh
  • Publication number: 20210407792
    Abstract: Exemplary methods of forming a silicon-and-carbon-containing material may include flowing a silicon-oxygen-and-carbon-containing precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region of the semiconductor processing chamber. The methods may include forming a plasma within the processing region of the silicon-and-carbon-containing precursor. The plasma may be formed at a frequency less than 15 MHz (e.g., 13.56 MHz). The methods may include depositing a silicon-and-carbon-containing material on the substrate. The silicon-and-carbon-containing material as-deposited may be characterized by a dielectric constant below or about 3.5 and a hardness greater than about 3 Gpa.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bo Xie, Kang S. Yim, Yijun Liu, Li-Qun Xia, Ruitong Xiong
  • Publication number: 20210404046
    Abstract: Methods of processing thin film by oxidation at high pressure are described. The methods are generally performed at pressures greater than 2 bar. The methods can be performed at lower temperatures and have shorter exposure times than similar methods performed at lower pressures. Some methods relate to oxidizing tungsten films to form self-aligned pillars.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Amrita B. Mullick, Pramit Manna, Abhijit Basu Mallick
  • Publication number: 20210404058
    Abstract: Apparatus and methods for supplying a vapor to a processing chamber such as a film deposition chamber are described. The vapor delivery apparatus comprises an inlet conduit and an outlet conduit, in fluid communication with an ampoule. A needle valve device restricts flow through the outlet conduit.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Maribel Maldonado-Garcia, Cong Trinh, Mihaela A. Balseanu, Kevin Griffin, Ning Li, Zohreh Razavi Hesabi
  • Publication number: 20210407853
    Abstract: Methods of forming copper interconnects are described. A doped tantalum nitride layer formed on a copper layer on a substrate has a first amount of dopant. The doped tantalum nitride layer is exposed to a plasma comprising one or more of helium or neon to form a treated doped tantalum nitride layer with a decreased amount of dopant. Apparatus for performing the methods are also described.
    Type: Application
    Filed: June 28, 2020
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Rui Li, Xiangjin Xie, Tae Hong Ha, Xianmin Tang, Lu Chen
  • Publication number: 20210404056
    Abstract: Methods for selectively forming a transition metal dichalcogenide (TMDC) film comprise exposing a substrate comprising a silicon oxide-based surface and a tungsten (W) segment to a sulfur source to selectively form the transition metal dichalcogenide film with the tungsten segment relative to the silicon oxide-based surface. Chemical vapor deposition (CVD) at a temperature in a range of 350° C. to 600° C. is used to form the TMDC film. CVD may be conducted by low pressure CVD (LPCVD) or atmospheric pressure CVD (APCVD). Methods of making devices incorporating the TMDC films are also provided.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Susmit Singha Roy, Abhijit Basu Mallick
  • Publication number: 20210404062
    Abstract: Apparatus and methods to process one or more wafers are described. A substrate is exposed to a plurality of process stations to deposit, anneal, treat and optionally etch a film in small increments to provide self-aligned growth of the film on a substrate surface.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Applicant: Applied Materials, Inc.
    Inventor: Suketu Arun Parikh
  • Patent number: 11207826
    Abstract: An additive manufacturing system includes a platen, a dispenser apparatus positioned above the platen to dispense a layer of powder over the platen, and an energy source to selectively fuse the layer of powder. The dispenser apparatus includes a support structure, a dispenser secured to the support structure and including a reservoir to hold the powder and one or more openings configured to deliver powder from the reservoir in a linear region that extends along a first axis, a spreader extending along the first axis and secured to the support structure and positioned to spread powder already delivered on the platen by the dispenser, and a drive system to move the support structure along a second axis perpendicular to the first axis such that the dispenser and blade move together to sweep the linear region along the second axis to deposit and level the powder.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
  • Patent number: 11207758
    Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
  • Patent number: 11209804
    Abstract: One or more first parameters associated with an electronic device manufacturing process are monitored. An artificial neural network associated with the one or more first parameters is determined. One or more second parameters are determined using the artificial neural network. The one or more first parameters are adjusted using the one or more second parameters.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Banqiu Wu
  • Patent number: 11211252
    Abstract: Electroplating systems according to the present technology may include a two-bath electroplating chamber including a separator configured to provide fluid separation between a first bath configured to maintain a catholyte during operation and a second bath configured to maintain an anolyte during operation. The electroplating systems may include a catholyte tank and an anolyte tank fluidly coupled with the two baths of the two-bath electroplating chamber. The electroplating systems may include a first pump configured to provide catholyte from the catholyte tank to the first bath. The electroplating systems may include a second pump configured to provide anolyte from the anolyte tank to the second bath. The electroplating systems may also include an oxygen-delivery apparatus configured to provide an oxygen-containing fluid within the electroplating system.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, You Wang
  • Patent number: 11211439
    Abstract: A display device includes a display layer having a plurality of organic light-emitting diodes (OLEDs) and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a plurality of first polymer projections on display layer, the plurality of first polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of first polymer projections and any exposed underlying surface in the spaces between the first polymer projections, the dielectric layer forming side walls along sides of the first polymer projections and defining wells in spaces between the side walls.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11209398
    Abstract: Embodiments disclosed herein include diagnostic substrates and methods of using such substrates. In an embodiment, a diagnostic substrate comprises a substrate, and a device layer over the substrate. In an embodiment, the diagnostic substrate further comprises a resonator in the device layer. In an embodiment, the resonator comprises a cavity, a cover layer over the cavity, and electrodes within the cavity for driving and sensing resonance of the cover layer. In an embodiment, the diagnostic substrate further comprises a reflector surrounding a perimeter of the resonator.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Chuang-Chia Lin, Surajit Kumar, Upendra Ummethala
  • Patent number: 11211247
    Abstract: Water soluble organic-inorganic hybrid masks and mask formulations, and methods of dicing semiconductor wafers are described. In an example, a mask for a wafer singulation process includes a water-soluble matrix based on a solid component and water. A p-block metal compound, an s-block metal compound, or a transition metal compound is dissolved throughout the water-soluble matrix.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Wenguang Li, James S. Papanu
  • Patent number: 11211286
    Abstract: Processing methods may be performed to form an airgap spacer on a semiconductor substrate. The methods may include forming a spacer structure including a first material and a second material different from the first material. The methods may include forming a source/drain structure. The source/drain structure may be offset from the second material of the spacer structure by at least one other material. The methods may also include etching the second material from the spacer structure to form the airgap. The source/drain structure may be unexposed to etchant materials during the etching.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ashish Pal, Gaurav Thareja, Sankuei Lin, Ching-Mei Hsu, Nitin K. Ingle, Ajay Bhatnagar, Anchuan Wang
  • Publication number: 20210399011
    Abstract: Described is selective deposition of a silicon nitride (SiN) trap layer to form a memory device. A sacrificial layer is used for selective deposition in order to permit selective trap deposition. The trap layer is formed by deposition of a mold including a sacrificial layer, memory hole (MH) patterning, sacrificial layer recess from MH side, forming a deposition-enabling layer (DEL) on a side of the recess, and selective deposition of trap layer. After removing the sacrificial layer from a slit pattern opening, the deposition-enabling layer (DEL) is converted into an oxide to be used as blocking oxide.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 23, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Tomohiko Kitajima, Mihaela A. Balseanu