Patents Assigned to Applied Materials, Inc.
  • Patent number: 11948790
    Abstract: Embodiments described herein generally relate to apparatuses for processing a substrate. In one or more embodiments, a heater support kit includes a heater assembly contains a heater plate having an upper surface and a lower surface, a chuck ring disposed on at least a portion of the upper surface of the heater plate, a heater arm assembly contains a heater arm and supporting the heater assembly, and a heater support plate disposed between the heater plate and the heater arm and in contact with at least a portion of the lower surface of the heater plate.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tuan Anh Nguyen, Jeongmin Lee, Anjana M. Patel, Abdul Aziz Khaja
  • Patent number: 11948846
    Abstract: Methods and systems are described for generating assessment maps. A method includes receiving a first vector map comprising a first set of vectors each indicating a distortion of a particular location on a substrate and generating a second vector map indicating a change in direction of a magnitude of the distortion of the particular location on the substrate. The method further includes generating a third vector map comprising vectors reflecting reduced noise in distortions across the plurality of locations on the substrate and generating a fourth vector map projecting a direction component of each vector component in the third set of vectors to a radial direction. The method further includes generating a fifth vector map by grouping the vectors of the fourth set of vectors and determining a magnitude associated with each group of vectors.
    Type: Grant
    Filed: April 4, 2023
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Wenjiao Wang, Joshua Maher, Xinhai Han, Deenesh Padhi, Tza-Jing Gung
  • Patent number: 11948885
    Abstract: Methods and apparatus for creating a dual metal interconnect on a substrate. In some embodiments, a first liner of a first nitride material is deposited into at least one 1X feature and at least one wider than 1X feature, the first liner has a thickness of less than or equal to approximately 12 angstroms; a second liner of a first metal material is deposited into the at least one 1X feature and at least one wider than 1X feature; the first metal material is reflowed such that the at least one 1X feature is filled with the first metal material and the at least one wider than 1X feature remains unfilled with the first metal material; a second metal material is deposited on the first metal material, and the second metal material is reflowed such that the at least one wider than 1X feature is filled with the second metal material.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Suketu A. Parikh, Rong Tao, Roey Shaviv, Joung Joo Lee, Seshadri Ganguli, Shirish Pethe, David Gage, Jianshe Tang, Michael A Stolfi
  • Patent number: 11950384
    Abstract: Process assemblies and cable management assemblies for managing cables in tight envelopes. A processing assembly includes a top chamber having at least one substrate support, a support shaft, a robot spindle assembly, a stator and a cable management system. The cable management system includes an inner trough assembly and an outer trough assembly configured to move relative to one another, and a plurality of chain links configured to house at least one cable for delivering power to the process assembly.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Akshay Gunaji, Uday Pai, Timothy J. Roggenbuck, Sanjeev Baluja, Kalesh Panchaxari Karadi, Tejas Ulavi
  • Patent number: 11948784
    Abstract: Apparatus and methods for improving film uniformity in a physical vapor deposition (PVD) process are provided herein. In some embodiments, a PVD chamber includes a pedestal disposed within a processing region of the PVD chamber, the pedestal having an upper surface configured to support a substrate thereon, a first motor coupled to the pedestal, a lid assembly comprising a first target, a first magnetron disposed over a portion of the first target, and in a region of the lid assembly that is maintained at atmospheric pressure, a first actuator configured to translate the first magnetron in a first direction, a second actuator configured to translate the first magnetron in a second direction, and a system controller that is configured to cause the first magnetron to translate along at least a portion of a first path by causing the first actuator and second actuator to simultaneously translate the first magnetron.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Harish Penmethsa, Hong S. Yang, Suresh Palanisamy
  • Patent number: 11944988
    Abstract: Embodiments of multi-zone showerheads are provided herein. In some embodiments, a multi-zone showerhead includes: a body having an outer surface and including a plurality of fluidly independent plenums; and a plurality of gas distribution plugs extending through the body, wherein at least one gas distribution plug includes a first internal gas passageway coupling a first plenum of the plurality of fluidly independent plenums to the outer surface and a second internal gas passageway coupling a second plenum of the plurality of fluidly independent plenums to the outer surface. In some embodiments, the body can include: a top plate; a bottom plate; and one or more intermediate plates disposed between the top plate and the bottom plate, wherein individual plenums of the plurality of fluidly independent plenums are respectively defined between adjacent plates of the top plate, the bottom plate, and the one or more intermediate plates.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhannad Mustafa, Muhammad Rasheed
  • Publication number: 20240102157
    Abstract: Embodiments of the disclosure are directed to methods of depositing a molybdenum film directly on a substrate surface (e.g., a low-K dielectric material) by exposing the substrate surface to a molybdenum-containing precursor and a plasma at a temperature of less than or equal to 400° C. The molybdenum-containing precursor comprises one or more of molybdenum pentachloride (MoCl5), molybdenum dioxide dichloride (MoO2Cl2), molybdenum oxytetrachloride (MoOCl4), molybdenum hexacarbonyl, bis(tert-butylimido)-bis(dimethylamido)molybdenum, or bis(ethylbenzene) molybdenum. The plasma comprises one or more of hydrogen (H2), nitrogen (N2), or a silane (SixHy). In some embodiments, when the molybdenum-containing precursor comprises molybdenum hexafluoride (MoF6), the plasma does not include hydrogen (H2).
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Applicant: Applied Materials, Inc.
    Inventors: TUERXUN AILIHUMAER, Srinivas Gandikota, Yixiong Yang, Yogesh Sharma, Ashutosh Agarwal, Mandyam Sriram
  • Publication number: 20240105499
    Abstract: Embodiments of the present technology relate to semiconductor processing methods that include providing a structured semiconductor substrate including a trench having a bottom surface and top surfaces. The methods further include depositing a portion of a silicon-containing material on the bottom surface of the trench for at least one deposition cycle, where each deposition cycle includes: depositing the portion of the silicon-containing material on the bottom surface and top surfaces of the trench, depositing a carbon-containing mask layer on the silicon-containing material on the bottom surface of the trench, where the carbon-containing mask layer is not formed on the top surfaces of the trench, removing the portion of the silicon-containing material from the top surfaces of the trench, and removing the carbon-containing mask layer from the silicon-containing material on the bottom surface of the trench, where the as-deposited silicon-containing material remains on the bottom surface of the trench.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 28, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallick, Xinke Wang, Xiang Ji, Praket Prakash Jha
  • Patent number: 11939668
    Abstract: A method of forming a tungsten-containing layer over a substrate includes a) positioning a substrate on a substrate support in a process volume of a process chamber; b) providing a precursor gas to the process volume of the process chamber for a first duration; and c) providing a tungsten-containing gas to the process volume of the process chamber by opening a pulsing valve on a tungsten-containing gas delivery line for a second duration occurring after the first duration to form a tungsten-containing layer on the substrate. The tungsten-containing gas delivery line includes a first section connected to an inlet of the pulsing valve and a second section connected to an outlet of the pulsing valve, the first section connects the inlet of the pulsing valve to a reservoir of tungsten-containing gas, the second section connects the outlet of the pulsing valve to an inlet of the process chamber.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zubin Huang, Mohammed Jaheer Sherfudeen, David Matthew Santi, Jallepally Ravi, Peiqi Wang, Kai Wu
  • Patent number: 11939674
    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 1:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
  • Patent number: 11942330
    Abstract: Exemplary methods of etching gallium oxide from a semiconductor substrate may include flowing a first reagent in a substrate processing region housing the semiconductor substrate. The first reagent may include HX. X may be at least one of fluorine, chlorine, and bromine. The semiconductor substrate may include an exposed region of gallium oxide. Fluorinating the exposed region of gallium oxide may form a gallium halide and H2O. The methods may include flowing a second reagent in the substrate processing region. The second reagent may be at least one of trimethylgallium, tin acetylacetonate, tetramethylsilane, and trimethyltin chloride. The second reagent may promote a ligand exchange where a methyl group may be transferred to the gallium halide to form a volatile Me2GaY or Me3Ga. Y may be at least one of fluorine, chlorine, and bromine from the second reagent. The methods may include recessing a surface of the gallium oxide.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Lisa J. Enman, Lakmal C. Kalutarage, Mark J. Saly
  • Patent number: 11942345
    Abstract: Embodiments disclosed herein include a method of centering a substrate in a chamber. In an embodiment, the method comprises inserting the substrate into the chamber with a robot arm, obtaining a delta time value for a second pyrometer relative to a first pyrometer, where the delta time value is a duration of time between when the first pyrometer is covered by the substrate and when the second pyrometer is covered by the substrate, calculating a time offset value of the delta time value relative to an ideal delta time value, where the ideal delta time value is the delta time value when the substrate is perfectly centered in a first direction perpendicular to the motion of the substrate, and comparing the time offset value to a graph or a lookup table that correlates the time offset value to a distance offset value.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventor: Wolfgang Aderhold
  • Patent number: 11942361
    Abstract: Disclosed are approaches for forming semiconductor device cavities using directional dielectric deposition. One method may include providing a plurality of semiconductor structures and a plurality of trenches of a semiconductor device, and forming a dielectric atop the plurality of semiconductor structures by delivering a dielectric material at a non-zero angle of inclination relative to a normal extending perpendicular from a top surface of the plurality of semiconductor structures. The dielectric may be further formed by delivering the dielectric material at a second non-zero angle of inclination relative to the normal extending perpendicular from the top surface of the plurality of semiconductor structures.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Armin Saeedi Vahdat, Tristan Y. Ma, Johannes M. van Meer, John Hautala, Naushad K. Variam
  • Patent number: 11940682
    Abstract: Embodiments described and discussed herein generally relate to flexible or foldable display devices, and more specifically to flexible cover lens assemblies. In one or more embodiments, a flexible cover lens assembly contains a glass layer, an adhesion promotion layer on the glass layer, an anti-reflectance layer disposed on the adhesion promotion layer, a dry hardcoat layer having a nano-indentation hardness in a range from about 1 GPa to about 5 GPa and disposed on the anti-reflectance layer, and an anti-fingerprint coating layer disposed on the dry hardcoat layer.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Harvey You, Helinda Nominanda, Neil Morrison, Daniel Paul Forster, Arvinder Chadha
  • Patent number: 11942381
    Abstract: Embodiments of the present invention provide apparatus and method for reducing non uniformity during thermal processing. One embodiment provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to rotate the substrate, a sensor assembly configured to measure temperature of the substrate at a plurality of locations, and one or more pulse heating elements configured to provide pulsed energy towards the processing volume.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang R. Aderhold, Aaron Muir Hunter, Joseph M. Ranish
  • Patent number: 11940724
    Abstract: Provided herein are apparatus, systems and methods for processing reticle blanks. A reticle processing system includes a support assembly having a plate coupled to a frame, and a carrier base assembly supported on the support assembly. The carrier base assembly comprises a wall extending from a top surface of the carrier base and defining a containment region for a reticle.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sanjay Bhat, Vibhu Jindal
  • Patent number: 11939666
    Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Carmen Leal Cervantes, Feng Chen, Lu Chen, Wenjing Xu, Aravind Kamath, Cheng-Hsiung Matthew Tsai, Tae Hong Ha, Alexander Jansen, Xianmin Tang
  • Patent number: 11942319
    Abstract: A horizontal pre-clean module includes a chamber including a basin and a lid which collectively define a processing area, a rotatable vacuum table disposed in the processing area, a pad conditioning station, a pad carrier positioning arm having a first end and a second end distal from the first end, a pad carrier assembly coupled to the first end of the pad carrier positioning arm, and an actuator coupled to the second end of the pad carrier positioning arm and configured to swing the pad carrier assembly between a first position over the rotatable vacuum table and a second position over the pad conditioning station. The pad carrier assembly includes a gimbal base and a pad carrier coupled to the gimbal base, the gimbal base and the pad carrier are configured to support a buffing pad by a mechanical clamping mechanism and a suction clamping mechanism.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Edward Golubovsky, Jagan Rangarajan, Ekaterina Mikhaylichenko
  • Patent number: 11940683
    Abstract: Embodiments described and discussed herein generally relate to flexible or foldable display devices, and more specifically to flexible cover lens assemblies. In one or more embodiments, a flexible cover lens assembly contains a substrate, an anti-fingerprint coating layer, and an adhesion promotion layer disposed between the substrate and the anti-fingerprint coating layer.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Harvey You, Helinda Nominanda, Neil Morrison, Daniel Paul Forster, Arvinder Chadha
  • Patent number: 11939675
    Abstract: In one aspect, an apparatus includes a chamber body, a blocker plate for delivering process gases into a gas mixing volume, and a face plate having holes through which the mixed gas is distributed to a substrate. In another aspect, the face plate may include a first region with a recess relative to a second region. In another aspect, the blocker plate may include a plurality of regions, each region having different hole patterns/geometries and/or flow profiles. In another aspect, the apparatus may include a radiation shield disposed below a bottom of the substrate support. A shaft or stem of the substrate support includes holes at an upper end thereof near the substrate support.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rui Cheng, Karthik Janakiraman, Zubin Huang