Patents Assigned to Applied Materials
  • Patent number: 11569114
    Abstract: Embodiments described herein relate to a substrate support assembly. The substrate support assembly includes an ESC base assembly having a base channel disposed therein, a facility plate, the facility plate coupled to the ESC base assembly with a vacuum region therebetween, and a seal assembly. The seal assembly includes an upper flange coupled to the base channel of the ESC base assembly, the upper flange disposed in the facility plate, a lower flange coupled to the upper flange, the lower flange disposed in the facility plate, a gasket disposed between the upper flange and the lower flange, and an insulator tube coupled to the lower flange. A passage is connected to the base channel, the passage is defined by connected openings of the upper flange, the gasket, the lower flange, the insulator tube, and the base assembly.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yogananda Sarode Vishwanath, Steven E. Babayan, Andreas Schmid, Stephen Donald Prouty, Andrew Antoine Noujaim
  • Patent number: 11569245
    Abstract: A method for forming an oxide layer includes forming an interfacial layer on a substrate, forming an amorphous silicon layer on the interfacial layer, performing a direct oxidation process to selectively oxidize the formed amorphous silicon layer, and performing a thermal oxidation process to oxidize the formed amorphous silicon layer.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Christopher S. Olsen
  • Patent number: 11569102
    Abstract: A method includes flowing gas comprising an oxidation inhibiting gas into a chamber of a semiconductor processing system. The chamber includes one or more of a factory interface of the semiconductor processing system or an adjacent chamber that is mounted to the factory interface. The method further includes receiving, via one or more sensors coupled to the chamber, sensor data indicating at least one of a current oxygen level within the chamber or a current moisture level within the chamber. The method further includes determining, based on the sensor data, whether to perform an adjustment of a current amount of the oxidation inhibiting gas entering into the chamber. The method further includes, responsive to determining to perform the adjustment, causing the adjustment of the current amount of the oxidation inhibiting gas entering into the chamber.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Murali Narasimhan, Patrick Pannese, Kunal Jain
  • Patent number: 11565367
    Abstract: A retaining ring used in the polishing of semiconductor substrates is described herein. A retaining ring includes a bottom surface configured to contact a polishing pad and a top surface configured to attach to a carrier head. The top surface includes a plurality of screw holes and a plurality of alignment slots. The top surface also includes a first insert disposed in a first alignment slot of the plurality of alignment slots, the first insert flush with or below the top surface, and where the first insert configured to prevent insertion of an alignment pin into the first alignment slot.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Liam S. Roberts, Eric A. Bunn
  • Patent number: 11565402
    Abstract: The disclosure describes devices, systems and methods relating to a transfer chamber for an electronic device processing system. For example, a robot can include a first mover configured to be driven by a platform of a linear motor, a support structure disposed on the first mover, a first robot arm attached to the first end of the support structure at a shoulder axis, and a first arm drive assembly. The first drive assembly can include a first pulley attached to a first end of the support structure and to the first robot arm at the shoulder axis, a second pulley attached to a second end of the support structure, a first band connecting the first pulley to the second pulley, and a second mover configured to be driven by the platform of the linear motor, where the second mover is connected to the first band, and where motion of the second mover relative to the first mover causes the first band to a) rotate the first pulley and the second pulley and b) rotate the first robot arm around the shoulder axis.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Berger, Jeffrey C Hudgens
  • Patent number: 11566318
    Abstract: An article comprises a body and a conformal protective layer on at least one surface of the body. The conformal protective layer is a plasma resistant rare earth oxide film having a thickness of less than 1000 ?m, wherein the plasma resistant rare earth oxide film is selected from a group consisting of an Er—Y composition, an Er—Al—Y composition, an Er—Y—Zr composition, and an Er—Al composition.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Vahid Firouzdor, Biraja Prasad Kanungo, Tom K. Cho, Vedapuram S. Achutharaman, Ying Zhang
  • Patent number: 11566317
    Abstract: An article comprises a body and a conformal protective layer on at least one surface of the body. The conformal protective layer is a plasma resistant rare earth oxide film having a thickness of less than 1000 ?m, wherein the plasma resistant rare earth oxide is selected from a group consisting of YF3, Er4Al2O9, ErAlO3, and a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Vahid Firouzdor, Biraja Prasad Kanungo, Tom K. Cho, Vedapuram S. Achutharaman, Ying Zhang
  • Patent number: 11569063
    Abstract: An ion implanter may include an ion source, arranged to generate a continuous ion beam, a DC acceleration system, to accelerate the continuous ion beam, as well as an AC linear accelerator to receive the continuous ion beam and to output a bunched ion beam. The ion implanter may also include an energy spreading electrode assembly, to receive the bunched ion beam and to apply an RF voltage between a plurality of electrodes of the energy spreading electrode assembly, along a local direction of propagation of the bunched ion beam.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Paul J. Murphy, Frank Sinclair, Jun Lu, Daniel Tieger, Anthony Renau
  • Patent number: 11568531
    Abstract: There is provided a method of examination of a semiconductor specimen and a system thereof. The method comprises: using a trained Deep Neural Network (DNN) to process a fabrication process (FP) sample, wherein the FP sample comprises first FP image(s) received from first examination modality(s) and second FP image(s) received from second examination modality(s) which differs from the first examination modality(s), and wherein the trained DNN processes the first FP image(s) separately from the second FP image(s); and further processing by the trained DNN the results of such separate processing to obtain examination-related data specific for the given application and characterizing at least one of the processed FP images. When the FP sample further comprises numeric data associated with the FP image(s), the method further comprises processing by the trained DNN at least part of the numeric data separately from processing the first and the second FP images.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: January 31, 2023
    Assignee: Applied Materials Israel Ltd.
    Inventors: Ohad Shaubi, Denis Suhanov, Assaf Asbag, Boaz Cohen
  • Patent number: 11565489
    Abstract: Embodiments described herein relate to methods and materials for optical device fabrication. In one embodiment, a method of fabricating an optical device is provided. The method includes depositing a dielectric film on a substrate, depositing a wetting layer on the dielectric film, and depositing a metal containing film on the wetting layer. In another embodiment, an optical device is provided. The device includes a substrate, a dielectric film deposited on and contacting the substrate, a wetting layer deposited on and contacting the dielectric film, and a metal containing film deposited on and contacting the wetting layer.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Karl J. Armstrong, Jinxin Fu, Wilson Banez
  • Publication number: 20230024009
    Abstract: Exemplary substrate edge polishing apparatuses may include a chuck body defining a substrate support surface. The apparatuses may include an edge ring seated on the chuck body. The apparatuses may include a retaining wall disposed radially outward of the edge ring. The apparatuses may include a slurry delivery port disposed radially inward of the retaining wall. The apparatuses may include a cylindrical spindle that is positionable over the chuck body. The apparatuses may include an annular polishing pad coupled with a lower end of the cylindrical spindle.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kevin H. Song, Benedict W. Pang
  • Publication number: 20230023396
    Abstract: A method of depositing material over a sample in a deposition region of the sample with a charged particle beam column, the method comprising: positioning a sample within a vacuum chamber such that the deposition region is under a field of view of the charged particle beam column; cooling the deposition region by contacting the sample with a cyro-nanomanipulator tool in an area adjacent to the deposition region; injecting a deposition precursor gas into the vacuum chamber at a location adjacent to the deposition region; generating a charged particle beam with a charged particle beam column and focusing the charged particle beam on the sample; and scanning the focused electron beam across the localized region of the sample to activate molecules of the deposition gas that have adhered to the sample surface in the deposition region and deposit material on the sample within the deposition region
    Type: Application
    Filed: July 26, 2021
    Publication date: January 26, 2023
    Applicant: Applied Materials Israel Ltd.
    Inventor: Yehuda Zur
  • Publication number: 20230021398
    Abstract: Exemplary integrated cluster tools may include a factory interface including a first transfer robot. The tools may include a wet clean system coupled with the factory interface at a first side of the wet clean system. The tools may include a load lock chamber coupled with the wet clean system at a second side of the wet clean system opposite the first side of the wet clean system. The tools may include a first transfer chamber coupled with the load lock chamber. The first transfer chamber may include a second transfer robot. The tools may include a second transfer chamber coupled with the first transfer chamber. The second transfer chamber may include a third transfer robot. The tools may include a metal deposition chamber coupled with the transfer chamber.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Brian K. Kirkpatrick, Balasubramanian's Pranatharthiharan
  • Publication number: 20230027560
    Abstract: Described are lanthanide-containing metal coordination complexes which may be used as precursors in thin film depositions, e.g., atomic layer deposition processes. More specifically, described are homoleptic lanthanide-aminoalkoxide metal coordination complexes, lanthanide-carbohydrazide metal coordination complexes, and lanthanide-diazadiene metal coordination complexes. Additionally, methods for depositing lanthanide-containing films through an atomic layer deposition process are described.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Thomas Joseph Knisley, Mark Saly
  • Publication number: 20230029265
    Abstract: Methods of cleaning a substrate support comprise: introducing a cleaning gas into a processing chamber containing the substrate support; applying a radio frequency (RF) power to a remote plasma source that is in fluid communication with the processing chamber to establish a reactive etching plasma from the cleaning gas in the processing chamber; reacting deposits on the substrate support with the reactive etching plasma to form a by-products phase; and evacuating the by-products phase from the processing chamber.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xi Chen, Shreesha Yogish Rao, Sheng Guo, Chi H. Ching, Thomas Blasius Brezoczky, Cheng-Hsiung Tsai
  • Publication number: 20230025937
    Abstract: Methods of depositing platinum group metal films of high purity, low resistivity, and good conformality are described. A platinum group metal film is formed in the absence of an oxidant. The platinum group metal film is selectively deposited on a conductive substrate at a temperature less than 200° C. by using an organic platinum group metal precursor.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Yixiong Yang, Wei V. Tang, Seshadri Ganguli, Sang Ho Yu, Feng Q. Liu, Jeffrey W. Anthis, David Thompson, Jacqueline S. Wrench, Naomi Yoshida
  • Patent number: 11562904
    Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method comprises forming a first metal oxo film on the substrate with a first vapor phase process including a first metal precursor vapor and a first oxidant vapor, and forming a second metal oxo film over the first metal oxo film with a second vapor phase process including a second metal precursor vapor and a second oxidant vapor.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Lakmal Charidu Kalutarage, Mark Joseph Saly, Bhaskar Jyoti Bhuyan, Thomas Joseph Knisley, Kelvin Chan, Regina Germanie Freed, David Michael Thompson, Susmit Singha Roy, Madhur Sachan
  • Patent number: 11560626
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods utilized in the manufacture of semiconductor devices. More particularly, embodiments of the present disclosure relate to a substrate processing chamber, and components thereof, for forming semiconductor devices.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Timothy Joseph Franklin, Adam Fischbach, Edward Haywood, Abhijit B. Mallick, Pramit Manna, Carlaton Wong, Stephen C. Garner, Eswaranand Venkatasubramanian
  • Patent number: 11559492
    Abstract: The present invention relates to the field of coating pharmaceutical substrates. In particular, the invention relates to methods of coating of pharmaceutical substances, pharmaceutical ingredients or a blend of them. The invention also provides a method of making a pharmaceutical formulation which may be processed into a pharmaceutical dosage form, which utilizes solid pharmaceutical particles and a pharmaceutical formulation obtained by the method. The methods of the invention utilize atomic layer deposition technology. The novel methods allow difficult, moisture sensitive and electrically charged pharmaceutical substrates to be easily processable.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Pekka Hoppu, Tommi Kaariainen, Marja-Leena Kaariainen, Aimo Turunen
  • Patent number: 11564292
    Abstract: Embodiments disclosed herein include a housing for a source assembly. In an embodiment, the housing comprises a conductive body with a first surface and a second surface opposite from the first surface, and a plurality of openings through a thickness of the conductive body between the first surface and the second surface. In an embodiment, the housing further comprises a channel into the first surface of the conductive body, and a cover over the channel. In an embodiment, a first stem over the cover extends away from the first surface, and a second stem over the cover extends away from the first surface. In an embodiment, the first stem and the second stem open into the channel.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: James Carducci, Richard C. Fovell, Larry D. Elizaga, Silverst Rodrigues, Thai Cheng Chua, Philip Allan Kraus