Patents Assigned to Applied Materials
-
Patent number: 10391610Abstract: An apparatus for chemical mechanical polishing includes a support for a polishing pad having a polishing surface, and an electromagnetic induction monitoring system to generate a magnetic field to monitor a substrate being polished by the polishing pad. The electromagnetic induction monitoring system includes a core and a coil wound around a portion of the core. The core includes a back portion, a center post extending from the back portion in a first direction normal to the polishing surface, and an annular rim extending from the back portion in parallel with the center post and surrounding and spaced apart from the center post by a gap. A width of the gap is less than a width of the center post, and a surface area of a top surface of the annular rim is at least two times greater than a surface area of a top surface of the center post.Type: GrantFiled: October 5, 2017Date of Patent: August 27, 2019Assignee: Applied Materials, Inc.Inventors: Hassan G. Iravani, Kun Xu, Denis Ivanov, Shih-Haur Shen, Boguslaw A. Swedek
-
Patent number: 10391707Abstract: An additive manufacturing system includes a platen to support an object being manufactured, a dispenser to deliver a plurality of successive layers of a powder over the platen, and energy source configured to fuse at least a portion of the powder. The dispenser is configured to deliver the powder in a linear region that extends along a first axis. The dispenser and actuator are supported by a support structure, and the actuator is coupled to the support structure to move the support structure along a second axis perpendicular to the first axis such that the dispenser and energy source move as a single unit with the support structure and the linear region sweeps along the second axis to deposit the powder along a swath over the platen to form a layer of powder.Type: GrantFiled: March 30, 2018Date of Patent: August 27, 2019Assignee: Applied Materials, Inc.Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
-
Publication number: 20190259580Abstract: Methods and systems for etching substrates using a remote plasma are described. Remotely excited etchants are formed in a remote plasma and flowed through a showerhead into a substrate processing region to etch the substrate. Optical emission spectra are acquired from the substrate processing region just above the substrate. The optical emission spectra may be used to determine an endpoint of the etch, determine the etch rate or otherwise characterize the etch process. A weak plasma may be present in the substrate processing region. The weak plasma may have much lower intensity than the remote plasma. In cases where no bias plasma is used above the substrate in an etch process, a weak plasma may be ignited near a viewport disposed near the side of the substrate processing region to characterize the etchants.Type: ApplicationFiled: May 1, 2019Publication date: August 22, 2019Applicant: Applied Materials, Inc.Inventors: Tae Seung Cho, Soonam Park, Junghoon Kim, Dmitry Lubomirsky, Shankar Venkataraman
-
Patent number: 10388533Abstract: Methods for depositing a low resistivity nickel silicide layer used in forming an interconnect and electronic devices formed using the methods are described herein. In one embodiment, a method for depositing a layer includes positioning a substrate on a substrate support in a processing chamber, the processing chamber having a nickel target and a silicon target disposed therein, the substrate facing portions of the nickel target and the silicon target each having an angle of between about 10 degrees and about 50 degrees from the target facing surface of the substrate, flowing a gas into the processing chamber, applying an RF power to the nickel target and concurrently applying a DC power to the silicon target, concurrently sputtering silicon and nickel from the silicon and nickel targets, respectively, and depositing a NixSi1-x layer on the substrate, where x is between about 0.01 and about 0.99.Type: GrantFiled: May 24, 2018Date of Patent: August 20, 2019Assignee: Applied Materials, Inc.Inventors: He Ren, Minrui Yu, Mehul B. Naik
-
Patent number: 10385459Abstract: Disclosed herein are methods for fabricating layered ceramic materials via field assisted sintering technology. A method includes forming a ceramic green body on a surface of a substrate, and sintering the ceramic green body using a field-assisted sintering process to form a ceramic layer joined to the substrate.Type: GrantFiled: May 14, 2015Date of Patent: August 20, 2019Assignee: Applied Materials, Inc.Inventors: Jennifer Y. Sun, Yikai Chen, Biraja Prasad Kanungo
-
Patent number: 10388490Abstract: A sensing unit includes a first set of sensors that comprises a first set of active areas that are surrounded by a first set of first non-active areas and a second set of sensors that comprises a second set of active areas that are surrounded by a second set of non-active areas. The first set of sensors and the second set of sensors are positioned at different heights, the first set of active areas and the second set of active areas do not overlap, and the first set of non-active areas and the second set of non-active areas partially overlap.Type: GrantFiled: March 14, 2018Date of Patent: August 20, 2019Assignee: Applied Materials Israel Ltd.Inventor: Pavel Margulis
-
Patent number: 10387755Abstract: A method of classifying substrates with a metrology tool is herein disclosed. The method begins by training a deep learning framework using convolutional neural networks with a training dataset for classifying image dataset. Obtaining a new image from the meteorology tool. Running the new image through the deep learning framework to classify the new image.Type: GrantFiled: June 28, 2017Date of Patent: August 20, 2019Assignee: Applied Materials, Inc.Inventors: Sreekar Bhaviripudi, Shreekant Gayaka
-
Patent number: 10384265Abstract: A method of additive manufacturing include delivering at least one layer by either depositing a uniform layer of powder on a support and then removing a portion of the layer with a roller with a surface having spatially controlled electrostatic charge, or by depositing powder onto the surface of the roller and moving the roller relative to a support such that the spatially controllable electrostatic charge on the surface of the roller causes transfer of a corresponding portion of the powder from the roller onto the support or an underlying layer.Type: GrantFiled: June 17, 2016Date of Patent: August 20, 2019Assignee: Applied Materials, Inc.Inventors: Bharath Swaminathan, Ajey M. Joshi, Nag B. Patibandla, Hou T. Ng, Ashavani Kumar, Eric Ng, Bernard Frey, Kasiraman Krishnan
-
Publication number: 20190252216Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: ApplicationFiled: February 15, 2018Publication date: August 15, 2019Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang
-
Publication number: 20190252154Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.Type: ApplicationFiled: March 30, 2018Publication date: August 15, 2019Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky
-
Publication number: 20190252239Abstract: Processing methods may be performed to form an airgap spacer on a semiconductor substrate. The methods may include forming a spacer structure including a first material and a second material different from the first material. The methods may include forming a source/drain structure. The source/drain structure may be offset from the second material of the spacer structure by at least one other material. The methods may also include etching the second material from the spacer structure to form the airgap. The source/drain structure may be unexposed to etchant materials during the etching.Type: ApplicationFiled: February 15, 2019Publication date: August 15, 2019Applicant: Applied Materials, Inc.Inventors: Ashish Pal, Gaurav Thareja, San Kuei Lin, Ching-Mei Hsu, Nitin K. Ingle, Ajay Bhatnagar
-
Patent number: 10381200Abstract: A method and apparatus for processing substrates in tandem processing regions of a plasma chamber is provided. In one example, the apparatus is embodied as a plasma chamber that includes a chamber body having a first chamber side with a first processing region and a second chamber side with a second processing region. The chamber body has a front wall and a bottom wall. A first chamber side port, a second chamber side port, and a vacuum port are disposed through the bottom wall. The vacuum port is at least part of an exhaust path for each of the processing regions. A vacuum house extends from the front wall and defines a second portion of the vacuum port. A substrate support is disposed in each of the processing regions, and a stem is coupled to each substrate support. Each stem extends through a chamber side port.Type: GrantFiled: March 8, 2017Date of Patent: August 13, 2019Assignee: Applied Materials, Inc.Inventors: Andrew Nguyen, Yogananda Sarode Vishwanath, Xue Yang Chang
-
Patent number: 10376991Abstract: A pulse width controller for a thermal processing system is disclosed. Pulsed electromagnetic radiation is directed through a rotatable wave plate to a polarizing beam splitter, which reflects and transmits according to the phase angle of the wave plate. Radiation transmitted by the polarizing beam splitter is directed into an optical circuit that returns the radiation to the polarizing beam splitter after a transit time. A second rotatable wave plate is positioned in the optical circuit. The polarizing beam splitter reflects and transmits the returned radiation according to the phase angle of the second rotatable wave plate. A second pulse width controller may be nested in the optical circuit, and any number of pulse width controllers may be nested.Type: GrantFiled: September 18, 2013Date of Patent: August 13, 2019Assignee: Applied Materials, Inc.Inventor: Theodore P. Moffitt
-
Publication number: 20190244792Abstract: Gas distribution assemblies are described including a first plate and a second plate. The first plate may define a plurality of first apertures, and the second plate may define a plurality of second apertures in a first region of the second plate and a plurality of third apertures in a second region of the second plate. The second apertures may align with the first apertures. An area defined by the second region may be less than an area defined by the first region. The second plate may be sealingly coupled with the first plate to define a volume between the first plate and the second plate. The volume may be fluidly accessible from the third apertures, and fluidly isolated from the first and second apertures.Type: ApplicationFiled: February 5, 2019Publication date: August 8, 2019Applicant: Applied Materials, Inc.Inventors: Qiwei Liang, Rohit Sharma, Jingyu Qiao
-
Publication number: 20190246504Abstract: An evaporation apparatus (100) for depositing material on a flexible substrate (160) supported by a processing drum (170) is provided. The evaporation apparatus includes: a first set (110) of evaporation crucibles aligned in a first line (120) along a first direction for generating a cloud (151) of evaporated material to be deposited on the flexible substrate (160); and a gas supply pipe (130) extending in the first direction and being arranged between an evaporation crucible of the first set (110) of evaporation crucibles and the processing drum (170), wherein the gas supply pipe (130) includes a plurality of outlets (133) for providing a gas supply directed into the cloud of evaporated material, and wherein a position of the plurality of outlets is adjustable for changing a position of the gas supply directed into the cloud of evaporated material.Type: ApplicationFiled: August 1, 2016Publication date: August 8, 2019Applicant: Applied Materials, Inc.Inventor: Roland TRASSL
-
Patent number: 10370762Abstract: Embodiments of the disclosure provide a method and apparatus for depositing a layer on a substrate. In one embodiment, the method includes exposing a surface of the substrate disposed within a processing chamber to a fluid precursor, directing an electromagnetic radiation generated from a radiation source to a light scanning unit such that the electromagnetic radiation is deflected and scanned across the surface of the substrate upon which a material layer is to be formed, and initiating a deposition process with the electromagnetic radiation having a wavelength selected for photolytic dissociation of the fluid precursor to deposit the material layer onto the surface of the substrate. The radiation source may comprise a laser source, a bright light emitting diode (LED) source, or a thermal source. In one example, the radiation source is a fiber laser producing output in the ultraviolet (UV) wavelength range.Type: GrantFiled: November 22, 2016Date of Patent: August 6, 2019Assignee: Applied Materials, Inc.Inventor: Stephen Moffatt
-
Patent number: 10373864Abstract: Methods of wetting a semiconductor substrate may include forming a controlled atmosphere in a processing chamber housing the semiconductor substrate. The semiconductor substrate may define a plurality of features, which may include vias. The methods may include flowing a wetting agent into the processing chamber. A chamber pressure may be maintained below about 100 kPa. The methods may also include wetting the plurality of features defined in the substrate.Type: GrantFiled: December 22, 2017Date of Patent: August 6, 2019Assignee: Applied Materials, Inc.Inventors: Paul McHugh, Bridger Hoerner, Marvin Bernt, Thomas H. Oberlitner, Brian Aegerter, Richard W. Plavidal, Andrew Anten, Adam McClure, Randy Harris
-
Patent number: 10370764Abstract: A processing kit for a plasma processing chamber. The processing kit includes a plurality of ceramic arc-shaped pieces. Each arc-shaped piece has a concave first end and a convex second end and the first end of each arc-shaped piece is configured to mate with an adjacent end of a neighboring arc-shaped piece to form a ring shaped inner isolator.Type: GrantFiled: October 23, 2014Date of Patent: August 6, 2019Assignee: Applied Materials, Inc.Inventor: Ramprakash Sankarakrishnan
-
Publication number: 20190237335Abstract: Electroplating systems according to the present technology may include a two-bath electroplating chamber including a separator configured to provide fluid separation between a first bath configured to maintain a catholyte during operation and a second bath configured to maintain an anolyte during operation. The electroplating systems may include a catholyte tank and an anolyte tank fluidly coupled with the two baths of the two-bath electroplating chamber. The electroplating systems may include a first pump configured to provide catholyte from the catholyte tank to the first bath. The electroplating systems may include a second pump configured to provide anolyte from the anolyte tank to the second bath. The electroplating systems may also include an oxygen-delivery apparatus configured to provide an oxygen-containing fluid within the electroplating system.Type: ApplicationFiled: January 29, 2019Publication date: August 1, 2019Applicant: Applied Materials, Inc.Inventors: Eric J. Bergman, John L. Klocke, You Wang
-
Publication number: 20190233966Abstract: Systems for cleaning electroplating system components may include a seal cleaning assembly incorporated with an electroplating system. The seal cleaning assembly may include an arm pivotable between a first position and a second position. The arm may be rotatable about a central axis of the arm. The seal cleaning assembly may also include a cleaning head including a bracket portion coupled with a distal portion of the arm. The cleaning head may be characterized by a front portion formed to interface with a seal of the electroplating apparatus. The cleaning head may define a trench along the front portion, and the cleaning head may define a plurality of fluid channels through the cleaning head, each fluid channel of the plurality of fluid channels fluidly accessing a backside of the trench.Type: ApplicationFiled: February 1, 2019Publication date: August 1, 2019Applicant: Applied Materials, Inc.Inventor: Kyle M. Hanson