Patents Assigned to Applied Materials
  • Patent number: 7323042
    Abstract: An apparatus and method for abating toxic and/or hazardous gas species in a diluent gas stream line deriving from a by-pass line of a semiconductor process tool, comprising contacting the diluent gas stream with a dry resin sorbent material having an affinity for the toxic and/or hazardous gas species to effect the removal of at least a portion of the toxic and/or hazardous gas species by a chemisorbent or physisorbent reaction between the sorbent bed and the toxic gas component effectively reduces the concentration of the toxic gas component in the process diluent stream to below TLV.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventor: John Michael Sherer
  • Patent number: 7323700
    Abstract: A method and apparatus for controlling ion beam scanning in an ion implanter is disclosed. Before an implant process is commenced, a scan waveform to create a uniform distribution along a magnetic scan axis is determined, using a travelling Faraday detector (24). Charge data from the travelling Faraday (24) is collected into a small, finite number of channels and this is used to create a histogram of collected charge vs. beam crossing time. This is in turn used to correct a target scan velocity to compensate for any dose non-uniformity. The target scan velocity is used as a first input to a fast feedback loop. A second input is obtained by digitizing the output of an inductive pickup in the magnet of the magnetic scanner in the ion implanter. Each input is separately integrated and Fast Fourier Transformed Error coefficients Ferror are obtained by dividing. Fourier coefficients from the target scan velocity by Fourier coefficients from the inductive pickup signal.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Robert Joseph Ledoux, Raymond Paul Boisseau, William Philip Nett
  • Patent number: 7323230
    Abstract: A coated aluminum component for a substrate processing chamber comprises an aluminum component having a surface; a first aluminum oxide layer formed on the surface of the aluminum component, the aluminum oxide layer having a surface comprising penetrating surface features; and a second aluminum oxide layer on the first aluminum oxide layer, the second aluminum oxide layer substantially completely filling the penetrating surface features of the first aluminum oxide layer. A method of forming the coated aluminum component is also described.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Trung T. Doan, Kenny King-Tai Ngan
  • Patent number: 7323399
    Abstract: One embodiment of the present invention is a method for cleaning an electron beam treatment apparatus that includes: (a) generating an electron beam that energizes a cleaning gas in a chamber of the electron beam treatment apparatus; (b) monitoring an electron beam current; (c) adjusting a pressure of the cleaning gas to maintain the electron beam current at a substantially constant value; and (d) stopping when a predetermined condition has been reached.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Khaled A. Elsheref, Josphine J. Chang, Hichem M'saad
  • Patent number: 7323058
    Abstract: An electroless deposition system is provided. The system includes a processing mainframe, at least one substrate cleaning station positioned on the mainframe, and an electroless deposition station positioned on the mainframe. The electroless deposition station includes an environmentally controlled processing enclosure, a first processing station configured to clean and activate a surface of a substrate, a second processing station configured to electrolessly deposit a layer onto the surface of the substrate, and a substrate transfer shuttle positioned to transfer substrates between the first and second processing stations. The system also includes a substrate transfer robot positioned on the mainframe and configured to access an interior of the processing enclosure.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Arulkumar Shanmugasundram, Russell Ellwanger, Ian A. Pancham, Ramakrishna Cheboli
  • Patent number: 7323391
    Abstract: A method of fabricating a semiconductor device includes providing a region having doped silicon region on a substrate, and forming a silicon germanium material adjacent to the region on the substrate. A stressed silicon nitride layer is formed over at least a portion of the doped silicon region on the substrate. The silicon germanium layer and stressed silicon nitride layer induce a stress in the doped silicon region of the substrate. In one version, the semiconductor device has a transistor with source and drain regions having the silicon germanium material, and the doped silicon region forms a channel that is configured to conduct charge between the source and drain regions. The stressed silicon nitride layer is formed over at least a portion of the channel, and can be a tensile or compressively stressed layer according the desired device characteristics.
    Type: Grant
    Filed: January 15, 2005
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Reza Arghavani
  • Patent number: 7323416
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a method is provided for processing a substrate to remove conductive material disposed over narrow feature definitions formed in a substrate at a higher removal rate than conductive material disposed over wide feature definitions formed in a substrate by an electrochemical mechanical polishing technique, and then polishing the substrate by at least a chemical mechanical polishing technique.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Tianbao Du, Alain Duboust, Yan Wang, Yongqi Hu, Stan D. Tsai, Liang-Yuh Chen, Wen-Chiang Tu, Wei-Yung Hsu
  • Patent number: 7323401
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be etched in accordance with a predetermined pattern, and depositing a carbon-containing hard mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and (c) coupling RF plasma bias power or bias voltage to the workpiece. The method further includes photolithographically defining the predetermined pattern in the carbon-containing hard mask layer, and etching the target layer in the presence of the hard mask layer.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Patent number: 7323095
    Abstract: A method and apparatus is provided for depositing and planarizing a material layer on a substrate. In one embodiment, an apparatus is provided which includes a partial enclosure, a permeable disc, a diffuser plate and optionally an anode. A substrate carrier is positionable above the partial enclosure and is adapted to move a substrate into and out of contact or close proximity with the permeable disc. The partial enclosure and the substrate carrier are rotatable to provide relative motion between a substrate and the permeable disc. In another aspect, a method is provided in which a substrate is positioned in a partial enclosure having an electrolyte therein at a first distance from a permeable disc. A current is optionally applied to the surface of the substrate and a first thickness is deposited on the substrate. Next, the substrate is positioned closer to the permeable disc. During the deposition, the partial enclosure and the substrate are rotated relative one another.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: January 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Yung Hsu, Liang-Yuh Chen, Ratson Morad, Daniel A. Carl, Sasson Somekh
  • Publication number: 20080020690
    Abstract: A polishing system can have a polishing pad with a polishing surface and a bottom surface that includes a recess with a thickness less than the thickness of the polishing pad. An in-situ monitoring module can be positioned in a cavity formed in part by the recess. A vent path is provided with an opening to the cavity.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Manoocher Birang, Boguslaw Swedek, Doyle Bennett
  • Publication number: 20080020591
    Abstract: Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
    Type: Application
    Filed: June 13, 2007
    Publication date: January 24, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Victor Nguyen, Li-Qun Xia, Derek Witty, Hichem M'Saad, Mei-Yee Shek, Isabelita Roflox
  • Patent number: 7320734
    Abstract: A system for processing a workpiece includes a plasma immersion ion implantation reactor with an enclosure having a side wall and a ceiling and defining a chamber, and a workpiece support pedestal within the chamber having a workpiece support surface facing the ceiling and defining a process region extending generally across the wafer support pedestal and confined laterally by the side wall and axially between the workpiece support pedestal and the ceiling. The enclosure has at least a first pair of openings at generally opposite sides of the process region, and a first hollow conduit outside the chamber having first and second ends connected to respective ones of the first pair of openings, so as to provide a first reentrant path extending through the conduit and across the process region.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: January 22, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Andrew Nguyen, Amir Al-Bayati, Biagio Gallo, Gonzalo Antonio Monroy
  • Patent number: 7320942
    Abstract: A method for removal of metallic residue from a substrate after a plasma etch process in a semiconductor substrate processing system by cleaning the substrate in a hydrogen fluoride solution.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: January 22, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Xiaoyi Chen, Chentsau Ying, Padmapani C. Nallan, Ajay Kumar, Ralph C. Kerns, Ying Rui, Chun Yan, Guowen Ding, Wai-Fan Yau
  • Patent number: 7321140
    Abstract: A nickel silicon alloy barrier layer formed between a metal bonding pad on an integrated circuit and a tin-based solder ball, for example, a lead-free solder. The nickel silicon alloy contains at least 2 wt % silicon and preferably less than 20 wt %. An adhesion layer may be formed between the barrier layer and the bonding pad. For copper metallization, the adhesion layer may contain titanium or tantalum; for aluminum metallization, it may be aluminum. The nickel silicon alloy may be deposited by magnetron sputtering. Commercially available NiSi4.5% sputter targets have provided a superior under-bump metallization (UBM) with lead-free tin solder bumps. Dopants other than silicon/may be used to reduce the magnetic permeability and provide other advantages of the invention.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 22, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Yanping Li, Jriyan Jerry Chen, Lisa Yang
  • Publication number: 20080011423
    Abstract: In one implementation, a method for etching a flash memory high-k gate stack on a workpiece is provided which includes etching a conductive material layer in a low temperature plasma chamber and etching a high-k dielectric layer in a high temperature plasma chamber. The workpiece is transferred between the low temperature plasma chamber and the high temperature plasma chamber through a vacuum transfer chamber connecting the low temperature plasma chamber and the high temperature plasma chamber. In one embodiment, an integrated etch station for etching a high-k flash memory structure is provided, which includes an etch chamber configured for plasma etch processing of a conductive material layer connected via a transfer chamber to an etch chamber configured for plasma etch processing of a high-k dielectric layer.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 17, 2008
    Applicant: Applied Materials, Inc.
    Inventors: MEIHUA SHEN, Xikun Wang, Wei Liu, Yan Du, Shashank Deshmukh
  • Publication number: 20080013952
    Abstract: Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 17, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Andreas Goebel, Lawrence West, Gregory Wojcik
  • Publication number: 20080011426
    Abstract: An inductively coupled plasma reactor includes a coil antenna overlying the ceiling and coupled to an RF power source. The reactor further includes gas injection apparatus coupled to a process gas supply that comprises a supply of oxygen gas and a supply of a hydrogen-containing gas. A heated workpiece support in the chamber is configured to operate in a high temperature range including 700 degrees C. or higher.
    Type: Application
    Filed: August 2, 2007
    Publication date: January 17, 2008
    Applicant: Applied Materials, Inc.
    Inventor: Thai Chua
  • Publication number: 20080013911
    Abstract: A beam shaper has a light pipe fabricated of a material having a refractive index that provides total internal reflection within the light pipe. A first face accepts light and a second face releases light from the light pipe. The faces are orthogonal to an axis about which the light pipe is twisted and have different shapes. The area of the second face differs from an area of the first face by less than 25%.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 17, 2008
    Applicant: Applied Materials, Inc.
    Inventor: Dean Jennings
  • Patent number: 7319335
    Abstract: An improved prober for an electronic devices test system is provided. The prober is “configurable,” meaning that it can be adapted for different device layouts and substrate sizes. The prober generally includes a frame, at least one prober bar having a first end and a second end, a frame connection mechanism that allows for ready relocation of the prober bar to the frame at selected points along the frame, and a plurality of electrical contact pins along the prober bar for placing selected electronic devices in electrical communication with a system controller during testing. In one embodiment, the prober is be used to test devices such as thin film transistors on a glass substrate. Typically, the glass substrate is square, and the frame is also square. In this way, “x” and “y” axes are defined by the frame.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: January 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Matthias Brunner, Shinichi Kurita, Ralf Schmid, Fayez (Frank) E. Abboud, Benjamin Johnston, Paul Bocian, Emanuel Beer
  • Patent number: 7319068
    Abstract: A method is provided for processing a substrate including providing a processing gas comprising an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: January 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Ping Xu, Louis Yang