Patents Assigned to Arizona Board of Regents
  • Patent number: 11955136
    Abstract: Various embodiments of a system and associated method for detecting and localizing gunshots are disclosed herein.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: April 9, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventor: Garth Paine
  • Patent number: 11950769
    Abstract: A urine collection assembly includes a container; a funnel removably coupled to the container, the funnel in fluid communication with the container; a first collection chamber in selective communication with the funnel; a valve configured to allow selective communication between the first collection chamber and the funnel; a second collection chamber in selective communication with the funnel; and a lid removably coupleable to the funnel. A saddle may be removably coupleable to the funnel and configured to guide urine into the container.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: April 9, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: David Wallace, Sydney Wallace, Joshua Chang, Mark Naufel
  • Patent number: 11950026
    Abstract: A light projection system including a light source and a light controller to generate modulatable beams of light and an angular light modulator (ALM) positioned to selectively direct the light from each beam. The light controller can be a spatial light modulator or a processor programmed to control light output. The angular light modulator may be a digital micromirror device (DMD). The ALM may be configured to direct the images into diffraction orders or using scanning the images. A LIDAR system to detect a position of an object including a first source of a two-dimensional array of beams of light and ALM to project light into a selected one of a plurality of directions. An illumination system, comprising a first angular-spatial light modulator (ASLM) and a second ASLM system configured such a first beam and a second beam of light intersect.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: April 2, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Yuzuru Takashima, Brandon Hellman, Braden Smith
  • Patent number: 11944967
    Abstract: Sub-micrometer bioparticles are separated by size in a microfluidic channel utilizing a ratchet migration mechanism. A structure within the microfluidic channel includes an array of micro-posts arranged in laterally shifted rows. Reservoirs are disposed at each end of the microfluidic channel. A biased AC potential is applied across the channel via electrodes immersed into fluid in each of the reservoirs to induce a non-uniform electric field through the microfluidic channel. The applied potential comprises a first waveform with a first frequency that induces electro-kinetic flow of sub-micrometer bioparticles in the microfluidic channel, and an intermittent superimposed second waveform with a higher frequency. The second waveform selectively induces a dielectrophoretic trapping force to selectively impart ratchet migration based on particle size for separating the sub-micrometer bioparticles by size in the microfluidic channel.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: April 2, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Jinghui Luo
  • Patent number: 11945107
    Abstract: A method of controlling a drive motor for a powered ankle exoskeleton is disclosed. The method includes modeling motor drive current as a linear function of desired torque and ankle angular velocity, and then controlling motor current as a function of measured torque and determined ankle angular velocity.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 2, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF NORTHERN ARIZONA UNIVERSITY
    Inventors: Zachary Forest Lerner, Greg Orekhov, Jason Luque
  • Patent number: 11947128
    Abstract: A gaze tracking platform for human-machine interface device, such as a wearable Augmented Reality Near-to-Eye Display. The gaze tracking method, digital illumination assisted analog feedback tracking employs neither auxiliary camera nor digital image processing of human eye image that confronts challenges in gaze tracking speed, power, cost and space. Instead, an analog-digital hybrid method to track the gaze inspired by the groove tracking method that is widely adopted for optical data storage systems. In the method, a digital micromirror device generates angular modulated and infrared illuminating beam. The cornea reflects the infrared light and a segmented photodiode detects the reflection while providing a feedback servo signal to the digital micromirror device controller. The feedback signal is integrated over a time provides the variation gaze. Moreover, infrared and angularly modulated illumination is time-multiplexed with information displayed in visible wavelength.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 2, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventor: Yuzuru Takashima
  • Patent number: 11945985
    Abstract: Compounds of General Formula I may harvest electrogenerated excitons via metal-assisted delayed fluorescence (MADF). The compounds have utility in light emitting diodes and light emitting devices.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: April 2, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jian Li, Jiang Wu
  • Publication number: 20240099602
    Abstract: A system and associated methods for accurate localization of seizure onset zone (SOZ) from independent components (IC) of resting state functional magnetic resonance imaging (rs-fMRI) to improve surgical outcomes in children with Drug Resistant Epilepsy (DRE) are disclosed. The system and methods define a phased approach, where fMRI noise-related biomarkers are used through high fidelity image processing techniques to eliminate noise ICs. Then SOZ markers are used through a maximum likelihood-based classifier to determine SOZ localizing ICs.
    Type: Application
    Filed: September 25, 2023
    Publication date: March 28, 2024
    Applicant: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Ayan Banerjee, Sandeep Gupta, Varina Boerwinkle
  • Publication number: 20240103908
    Abstract: Provided herein are dynamic adaptive scheduling (DAS) systems. In some embodiments, the DAS systems include a first scheduler, a second scheduler that is slower than the first scheduler, and a runtime preselection classifier that is operably connected to the first scheduler and the second scheduler, which runtime preselection classifier is configured to effect selective use of the first scheduler or the second scheduler to perform a given scheduling task. Related systems, computer readable media, and additional methods are also provided.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 28, 2024
    Applicants: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, WISCONSIN ALUMNI RESEARCH FOUNDATION, UNIVERSITY OF ARIZONA, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Chaitali CHAKRABARTI, Umit OGRAS, Ahmet GOKSOY, Anish KRISHNAKUMAR, Ali AKOGLU, Md Sahil HASSAN, Radu MARCULESCU, Allen-Jasmin FARCAS
  • Patent number: 11937561
    Abstract: Modular cultivation systems utilized in a Vertical Farm or Plant Factory is described herein. The modular cultivation system has a growing module that includes an expandable and collapsible support frame with growing boards or pods, lighting boards, and an irrigation system arranged within the support frame to maximize the quantity of crops that can be grown within an available volume of space in a Vertical Farm unit, warehouse or greenhouse per unit time. The modular cultivation system further includes a mover robot for moving the growing module. The Vertical Farm relies on an ambulatory cultivation system and a cyclical automated operational protocol for planting, growing and harvesting made possible by the ambulatory growing module. Thus, access for crop planting, maintenance and harvesting is conveniently carried out through automation, that is, by commanding a specific ambulatory cultivation system to move autonomously to designated locations in the vertical farm.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: March 26, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Joel L. Cuello, Yaser Mehdipour, Jack Welchert
  • Publication number: 20240096047
    Abstract: Based on traffic images characteristics, a general pre-processing system and method reduces input size of neural network object recognition models to focus on necessary regions. The system includes a light neural network (binary or low precision; based on configuration) to detect target regions for further processing and applies a deeper model to those specific regions. The present disclosure provides experimentation results on various types of methods, such as conventional convolutional neural networks, transformers, and adaptive models, to show the scalability of the system.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 21, 2024
    Applicant: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Mohammad Farhadi, Yezhou Yang, Rahul Santhosh Kumar Varma
  • Publication number: 20240096490
    Abstract: A processor is configured to implement a machine learning model that is trained to select transcripts in blood for distinguishing neurodegenerative diseases. The algorithm is developed via machine learning and leverages concepts associated with blood-based changes in mRNA gene expression for differentiating patients of any neurodegenerative disease regardless of the proteins or their post-translational modifications occurring in disease.
    Type: Application
    Filed: January 28, 2022
    Publication date: March 21, 2024
    Applicant: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Carol J. Huseby, Paul Coleman
  • Publication number: 20240091309
    Abstract: Synthetic antimicrobial peptides, compositions comprising thereof, and methods of use for modulating one or more symptoms of an infection in a subject are disclosed. In some aspects, the infection is caused by mycobacteria, for example, a nontuberculous mycobacterium such as Mycobacterium abscessus. In other aspects, the infection is caused by Escherichia coli, Pseudomonas aeruginosa, or methicillin-resistant Staphylococcus aureus (MRSA). Also disclosed are methods of identifying synthetic antimicrobial peptides against a pathogen with no known effective treatment using a library of synthetic peptides.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 21, 2024
    Applicant: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Shelley HAYDEL, Christopher DIEHNELT
  • Publication number: 20240095425
    Abstract: Systems and methods are provided for predicting microhardness properties of a weld that defines a weld joint between at least two workpieces. The system includes a processor programmed to: receive temperature data that includes temperature values each attributed to a corresponding one of a plurality of points of the weld at corresponding times during a welding process used to produce the weld, determine peak temperature values and cooling rate values for each of the points of the weld based on the temperature values, predict a three-dimensional (3D) distribution of microhardness values of the weld based on a machine learning method that evaluates the peak temperature values and the cooling rate values, and generate display data based on the 3D distribution of microhardness values.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS LLC, Arizona Board of Regents on behalf of Arizona State University
    Inventors: Ying Lu, Junjie Ma, Hui-ping Wang, Mitchell Poirier, Baixuan Yang, Jay Oswald
  • Publication number: 20240095528
    Abstract: A method for increasing the temperature-resiliency of a neural network, the method comprising loading a neural network model into a resistive nonvolatile in-memory-computing chip, training the deep neural network model using a progressive knowledge distillation algorithm as a function of a teacher model, the algorithm comprising injecting, using a clean model as the teacher model, low-temperature noise values into a student model and changing, now using the student model as the teacher model, the low-temperature noises to high-temperature noises, and training the deep neural network model using a batch normalization adaptation algorithm, wherein the batch normalization adaptation algorithm includes training a plurality of batch normalization parameters with respect to a plurality of thermal variations.
    Type: Application
    Filed: September 8, 2023
    Publication date: March 21, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jae-sun Seo, Jian Meng, Li Yang, Deliang Fan
  • Publication number: 20240096073
    Abstract: A consensus-based decentralized multi-robot approach is presented for reconstructing a discrete distribution of features, modeled as an occupancy grid map, that represent information contained in a bounded planar 2D environment, such as visual cues used for navigation or semantic labels associated with object detection. The robots explore the environment according to a random walk modeled by a discrete-time discrete-state (DTDS) Markov chain and estimate the feature distribution from their own measurements and the estimates communicated by neighboring robots, using a distributed Chernoff fusion protocol. Under this decentralized fusion protocol, each robot's feature distribution converges to the ground truth distribution in an almost sure sense.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 21, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Aniket Shirsat, Spring Berman, Shatadal Mishra, Wenlong Zhang
  • Publication number: 20240091092
    Abstract: Systems and methods for a wearable “exo-shell” to improve the gait of elderly people during obstacle avoidance tasks are disclosed. With payload and energy expenditure as a main focus of this design, the present system leverages switchable, passive systems, in combination with lightweight materials that minimize additional metabolic costs, while remaining as “transparent” to the user as possible when inactive.
    Type: Application
    Filed: June 6, 2023
    Publication date: March 21, 2024
    Applicant: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Daniel Aukes, Dongting Li
  • Patent number: 11936782
    Abstract: The performance of quantum key distribution by systems and methods that use wavelength division multiplexing and encode information using both wavelength and polarization of photons of two or more wavelengths. Multi-wavelength polarization state encoding schemes allow ternary-coded digits, quaternary-coded digits and higher-radix digits to be represented by single photons. Information expressed in a first radix can be encoded in a higher radix and combined with a string of key values to produce a datastream having all allowed digit values of that radix in a manner that allows eavesdropping to be detected without requiring the sender and receiver to exchange additional information after transmission of the information.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: March 19, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF NORTHERN ARIZONA UNIVERSITY
    Inventors: Bertrand F. Cambou, Ines Montano, Ryan Behunin, Vince Rodriguez
  • Patent number: 11936450
    Abstract: Multi-stage distributed beamforming for distributed mosaic wireless networks is provided. Embodiments described herein present systems, devices, and methods that provide increased range, data rate, and robustness to interference and jamming. A distributed mosaic wireless network includes a transmitter, a receiver, and one or more distributed clusters of radios referred to herein as mosaics or relay mosaics. Each mosaic consists of several distributed, cooperative radio transceivers (e.g., mosaic nodes) that relay a signal sent by the transmitter towards the receiver. In some embodiments, a single-stage beamforming technique is implemented whereby the transmitter sends a signal to a first mosaic, which then relays this signal by beamforming to the receiver. In some embodiments, a multi-stage beamforming technique is implemented whereby the transmitter sends a signal to a first mosaic, which then relays this signal by beamforming to a second mosaic, which then relays this signal by beamforming to the receiver.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: March 19, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Andrew Herschfelt, Daniel W. Bliss, Owen Ma, Jacob Holtom
  • Patent number: 11932739
    Abstract: Composite material can include a matrix material, a fiber dispersed in the matrix material, and an ultraviolet (UV)-light sensitive mechanophore grafted to a surface of the fiber. A method for making a fiber-reinforced polymer composite can include contacting a fiber in a first solution, rinsing and then drying intermediate fiber, contacting dried fiber in a third solution, rinsing, and then drying the rinsed fiber thereby generating functionalized fiber that is sensitive to ultraviolet light. The functionalized fiber can be combined with a polymer matrix material, cured, and irradiated, thereby generating a fiber-reinforced polymer composite.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: March 19, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Ryan Gunckel, Lenore Dai, Aditi Chattopadhyay, Bonsung Koo