Abstract: A nucleic acid aptamer having binding affinity to A/H1N1pdm09 influenza virus, agents comprising the aptamer, and methods using the aptamer are provided.
Abstract: The present disclosure relates to a method for labeling particles with magnetic particles and an apparatus for labeling particles with magnetic particles.
Abstract: Abstract The disclosure provides a reagent comprising a leuco dye and a compound represented by Formula (I): where R represents a hydrocarbon chain having 8 to 17 carbon atoms, the reagent for measuring glycoprotein, a kit comprising the reagent and a second reagent, and methods of measuring hemoglobin A1c using the reagent.
Abstract: A molecular recognition element comprising a target molecule-recognizing portion, and a direct electron transfer-type oxidoreductase linked to the target molecule-recognizing portion.
Type:
Grant
Filed:
October 2, 2019
Date of Patent:
April 5, 2022
Assignees:
ARKRAY, Inc., Ultizyme International Ltd.
Abstract: An information processing device includes a categorizing section and a display control section. The categorizing section extracts a material component image identified as a material component from plural images obtained by imaging a sample fluid containing plural types of material element, and categorizes the extracted material component image serving as a detected component by predetermined category. The display control section performs control to re-categorize a material component image serving as the detected component already categorized into a different category, such that, when selection of a movement destination category is received in a state in which a first image list of detected components is being displayed, in a subsequent state in which the first image list and a second image list for the movement destination are being displayed at the same time, a material component image selected from the first image list is moved to the second image list.
Type:
Grant
Filed:
November 8, 2019
Date of Patent:
March 22, 2022
Assignees:
ARKRAY, Inc., SUMITOMO LIFE WELFARE AND CULTURE FOUNDATION
Inventors:
Koji Fujimoto, Shinya Nakajima, Kenichi Nagao
Abstract: A liquid sample analysis method including communicating a specific flow path with an aspirator via a branch flow path, aspirating air from the aspirator, aspirating a liquid sample into the sample supply path from the aspirator so that an entire amount of the aspirated air is accommodated in the branch flow path, communicating a sample extrusion path with a sample port, communicating a sheath fluid supply path with a sheath fluid port, and isolating the branch flow path from both the sample supply path and the specific flow path, extruding the liquid sample in the sample supply path so as to inflow into the sample flow path by causing a sheath fluid to inflow into the sheath fluid flow path from the sheath fluid supply path and causing the sheath fluid to inflow into the sample supply path from the sample extrusion path.
Abstract: A fluid delivery method for delivering a liquid sample to a flow cell including a taper section including a first and a second inner walls opposing the first inner wall, which is inclined to the second inner wall so that a distance between the first and the second inner walls at a downstream side of the taper section is shorter than a distance at an upstream side of the taper section, and including measurement flow path provided downstream of the taper section, through which a liquid sample flows together with a sheath fluid. The fluid delivery method includes sample introduction of delivering the liquid sample into the taper section along the second inner wall until the liquid sample reaches the measurement flow path, and sample pressing by delivering the sheath fluid into the taper section along the first inner wall after the liquid sample reaches the measurement flow path.
Abstract: An analytical tool is provided for analysis of a sample by capillary electrophoresis. The analytical tool includes an inlet reservoir into which a sample is introduced, a capillary tube in communication with the inlet reservoir, a filter through which a liquid from the inlet reservoir passes, an enlarged portion undergoing a sudden increase in a cross-sectional area and being in communication with the inlet reservoir and the capillary tube, and a pressure fluctuation reducer for preventing pressure fluctuation at the enlarge portion from affecting a liquid in the capillary tube.
Abstract: A measuring apparatus includes: a measuring unit to measure a signal value corresponding to a concentration of a specified substance contained in a first sample; an acquiring unit to acquire a reference value pertaining to the specified substance contained in a second sample; a calculation unit to calculate a concentration value of the specified substance contained in the first sample, based on the signal value and the reference value; a determination unit to determine whether a variation in the concentration value of the specified substance contained in the first sample is equal to or less than a threshold value; and an output unit to output, to a display unit, recommendation information representing recommendation for acquiring the reference value when the variation in the concentration value of the specified substance contained in the first sample is equal to or less than the threshold value.
Abstract: The present disclosure relates to a method for labeling particles with magnetic particles and an apparatus for labeling particles with magnetic particles.
Abstract: A method predicts an amount of an analyte in a urine specimen collected in a target time zone. The method includes measuring an amount of an analyte in a urine specimen collected in a predetermined time zone after an administration of a chelating agent and b) predicting, from the measured amount of the analyte in the urine specimen collected in the predetermined time zone, the amount of the analyte in the urine specimen collected in the target time zone on the basis of a correlation between amounts of analyte in urine specimens in the predetermined time zone and amounts of analyte in urine specimens in the target time zone. The amounts of the analyte in the urine specimens in the predetermined time and the target time zone are measured before predicting the amount of the analyte in the urine specimen collected in the target time zone.
Abstract: A method of driving a pump is used in a pressure-applying apparatus, the apparatus including a flow passage, a pump configured to impart pressure into the flow passage, an opening and closing valve configured to open and close the flow passage, a pressure detector configured to detect pressure in the flow passage, and an atmospheric air open valve configured to open an interior of the flow passage to atmospheric air. The method includes driving the pump after closing the opening and closing valve and opening the atmospheric air open valve, and evaluating a state of the pump, based on one of: the pressure detected by the pressure detector at a time at which a predetermined time period has elapsed after closing the atmospheric air open valve, and a time from closing of the atmospheric air open valve until detection of a predetermined pressure by the pressure detector.
Abstract: A measuring apparatus includes: a measuring unit to measure a signal value corresponding to a concentration of a specified substance of a first sample; an acquiring unit to acquire a reference value pertaining to the specified substance of a second sample; a calculating unit to calculate a concentration value of the specified substance of the first sample, based on the signal value and the reference value; a timing determination unit to determine timing for calibrating the reference value when satisfying at least one of a first condition that an activity status of a user is a predetermined status and a second condition that a variation in the concentration value of the specified substance of the first sample is equal to or smaller than a threshold value; and an input request unit to request the user to input the reference value at the determined timing.
Abstract: An analytical tool is provided for analysis of a sample by capillary electrophoresis. The analytical tool includes an inlet reservoir into which a sample is introduced, a capillary tube in communication with the inlet reservoir, a filter through which a liquid from the inlet reservoir passes, an enlarged portion undergoing a sudden increase in a cross-sectional area and being in communication with the inlet reservoir and the capillary tube, and a pressure fluctuation reducer for preventing pressure fluctuation at the enlarge portion from affecting a liquid in the capillary tube.
Abstract: A presentation method for presenting a time period to measure a blood glucose level, the presentation method includes: acquiring first information, the first information including a measurement result in which a glucose level of a user is measured with a time interval using a first measurement device and a measurement time at which the measurement result was acquired; determining, based on a comparison result obtained by comparing the first information with a predetermined threshold of the glucose level and a preset period, the time period for the user to measure the blood glucose level by using a second measurement device; and presenting the time period at a display.
Abstract: A method for processing a blood sample is provided that can improve the recovery rate of deformable rare cells that would easily pass through a filter and small rare cells while reducing the filtration area of the filter, and that can recover the rare cells alive.
Abstract: A manufacturing method for an electrochemical sensor includes an electrode forming step of forming an electrode, made of a porous material with electroconductivity, on an insulating substrate, and a resist forming step of coating a coating region on the electrode by a resist with non-electroconductivity in a solution state, and permeating communicating pores of the porous material with the resist, thereby adjusting a resistance value of the electrode.
Abstract: A reagent for glutamine synthetase reaction comprising a chelating agent and glutamine synthetase, and a reagent for quantification of ammonia comprising a chelating agent, ATP, glutamic acid, glutamine synthetase, glucose, an oxidized NAD compound, ADP-dependent hexokinase, and glucose-6-phosphate dehydrogenase, are provided.
Abstract: A method of performing an intravenous drip injection includes a first step, a second step, a third step and a fourth step. A first step includes starting dosing an infusion solution containing a predetermined component by the intravenous drip injection to a dosing recipient. A second step includes extracting a body fluid from the dosing recipient being dosed with the infusion solution. A third step includes measuring a concentration of the predetermined component in the extracted body fluid. A fourth step includes varying the concentration of the predetermined component in the infusion solution, corresponding to the concentration of the predetermined component in the body fluid.
Abstract: A plasma spectroscopy analysis method includes a preliminary addition process in which a bonding agent that is an agent other than DMSA is added to the specimen collected from a living body to which meso-2,3-dimercaptosuccinic acid (DMSA) is administered, a concentration process in which the analyte heavy metal ions in the specimen at a vicinity of one of a pair of electrodes by applying a voltage to the pair of electrodes, and a detection process in which plasma is generated by applying a voltage to the pair of electrodes, and luminescence of the analyte metal ions caused by the plasma is detected.