Abstract: A method for measuring the attraction propensity of fabric including the steps of charging a neutralized test fabric, optionally by contacting with a charging fabric, presenting the charged test fabric a predetermined distance from a static-influenced agent such that at least a portion of the static-influenced agent attaches to the charged test fabric, and determining the quantity of attached static-influenced agent.
Abstract: The present disclosure relates to a process for preparing polymers using a plug flow reactor. The process includes providing an aqueous monomer solution comprising amide monomers; evaporating the aqueous monomer solution to form a concentrated monomer solution; and polymerizing the concentrated monomer solution in a plug flow reactor comprising a shell side and a tube side to form a first process fluid comprising polymers. The concentrated monomer solution flows on the shell side from the inlet to the outlet.
Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
Abstract: Provided herein are processes for purifying TCH in a feed stream, such as an adiponitrile process stream. The processes include a first separating step of separating the adiponitrile process stream to form a first overhead stream comprising low-boiling components and high-boiling components and a first bottoms stream comprising high-boiling components. The processes also include a second separating step of separating the first overhead stream in one or more distillation columns to form a lights stream comprising low-boiling components, a heavies stream comprising high-boiling components, and a TCH stream.
Abstract: The present invention relates to a low-halogen flame retardant thermoplastic polyamide composition that provides improved mechanical and electrical stability at elevated temperatures, where the thermoplastic composition comprises a polyamide resin; a non-halogen, nitrogen-containing flame retardant; a heat stabilizer containing a copper halide and an organophosphorus compound; an optional lubricant and/or mold release agent; and an optional colorant.
Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
Abstract: A tri-carboxylic compound of Formula (IA) optionally in combination with a compound of Formula (IIA) behaves as a low-VOC, low odor coalescing agent, while a tri-carboxylic compound of Formula (IA) in combination with a compound of Formula (IIB), or alternatively, a tri-carboxylic compound of Formula (IB) in combination with a compound of Formula (IIA) exhibits dual coalescing and plasticizing properties. A tri-carboxylic compound of Formula (IB) optionally in combination with a compound of Formula (IIB) behaves as low-VOC, low odor plasticizing agent.
Abstract: Nonwoven multilayer structures having at least two nanofiber layers are described herein. The nonwoven multilayer structure may have two nanofibers layers that have different properties from each other, such as fiber diameter. One nanofiber layer may be produced by an electrospinning process, while another nanofiber layer may be produced by a melt blown process.
Abstract: A non-halogenated flame retardant polyamide composition is disclosed which comprises a polyamide, a non-halogenated flame retardant, a PA-6 homopolymer, and at least one heat stabilizer comprising a copper-containing heat stabilizer, an amine-containing heat stabilizer, or a phenol-containing heat stabilizer. The polyamide may have a ratio of carboxylic acid to amine end groups of greater than 1.8:1. The polyamide composition may comprise less than 900 ppm of bromine. Products formed from the composition are also disclosed.
Abstract: Described herein is an improved conversion of nitrous oxide (N2O) present as a by-product in a chemical process to NOx which can be further converted to a useful compound or material, such as nitric acid.
Abstract: A nanofiber nonwoven product is disclosed which comprises a polyamide with a relative viscosity from 2 to 330, spun into nanofibers with an average diameter of less than 1000 nanometers (1 micron). In general, the inventive products are prepared by: (a) providing a polyamide composition, wherein the polyamide has a relative viscosity from 2 to 330; (b) melt spinning the polyamide composition into a plurality of nanofibers having an average fiber diameter of less than 1 micron, followed by (c) forming the nanofibers into the product.
Abstract: The present disclosure relates to a process for stabilizing an antimony ammoxidation catalyst in an ammoxidation process. The process may comprise providing an antimony ammoxidation catalyst to a reactor; reacting propylene with ammonia and oxygen in the fluidized bed reactor in the presence of the antimony ammoxidation catalyst to form a crude acrylonitrile product; and adding an effective amount of an antimony-containing compound to the antimony ammoxidation catalyst to maintain catalyst conversion and selectivity; wherein the antimony-containing compound has a melting point less than 375° C. The present disclosure also relates to catalyst compositions and additional processes using the antimony ammoxidation catalyst stabilized by an antimony-containing compound.
Abstract: A hydrolysis resistant polyamide composition comprising from 50 wt % to 80 wt % polyamide polymer having a theoretical amine end group content of at least 55 ?eq/gram; and from 25 wt % to 60 wt % glass fibers. The weight ratio of polyamide polymer to glass fibers ranges from 0.5:1 to 4.0:1. The polyamide composition comprises less than 0.06 wt % copper; and/or from 1 ppb to 0.24 wt % non-copper metal halide compound. The polyamide composition, when hydrolysis aged for 500 hours at 130° C., demonstrates an impact resilience greater than 40 kJ/m2, as measured at 23° C.
Abstract: A filter comprising a nanofiber nonwoven product is disclosed which comprises a polyamide with a relative viscosity from 2 to 330, spun into nanofibers with an average diameter of less than 1000 nanometers (1 micron). In general, the inventive products are prepared by: (a) providing a polyamide composition, wherein the polyamide has a relative viscosity from 2 to 330; (b) melt spinning the polyamide composition into a plurality of nanofibers having an average fiber diameter of less than 1 micron, followed by (c) forming the nanofibers into the product.
Abstract: A heat-stabilized polyamide composition comprising from 25 wt % to 99 wt % of an amide polymer having an amine end group level greater than 50 ?eq/gram; a first stabilizer comprising a lanthanoid-based compound; a second stabilizer; and from 0 wt % to 65 wt % filler; wherein, when heat aged for 3000 hours over a temperature range of from 190° C. to 220° C., the polyamide composition demonstrates a tensile strength retention of greater than 51%, as measured at 23° C.
Abstract: An impact-modified polyamide composition comprising from 5 wt % to 85 wt % of polyamide polymer; from 10 wt % to 60 wt % glass fiber; from 3 wt % to 30 wt % of an impact modifier; and a melt stabilizer at a concentration less than 5 wt %; wherein the weight ratio of the impact modifier to the melt stabilizer ranges from 1.0:1 to 100:1; and wherein the polyamide composition demonstrates an un-notched Charpy impact energy loss at 23° C. that is greater than 80 kJ/m2 and a tensile strength greater than 135 MPa.
Abstract: Described herein is an improved conversion of nitrous oxide (N2O) present as a by-product in a chemical process to NOx which can be further converted to a useful compound or material, such as nitric acid.
Abstract: A non-halogenated flame retardant polyamide composition is disclosed which comprises a polyamide, a non-halogenated flame retardant, and a synergist. The polyamide may have a ratio of carboxylic acid to amine end groups of greater than 1.8. Products formed from the composition are also disclosed. The polyamide may comprise nylon 6,6.