Patents Assigned to Axcelis Technologies
  • Publication number: 20120248326
    Abstract: One embodiment relates to an ion implanter. The ion implanter includes an ion source to generate an ion beam, as well as a scanner to scan the ion beam across a surface of a workpiece along a first axis. The ion implanter also includes a deflection filter downstream of the scanner to ditheredly scan the ion beam across the surface of the workpiece along a second axis.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventors: Edward C. Eisner, Andy Ray, Bo H. Vanderberg
  • Publication number: 20120248324
    Abstract: The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventor: Edward C. Eisner
  • Patent number: 8278634
    Abstract: A method comprising introducing an injected gas (e.g., Argon, Xenon) into a beam line region comprising a magnetic scanner is provided herein. The injected gas improves beam current by enhancing (e.g., increasing, decreasing) charge neutralization of the magnetic ion beam (e.g., the ion beam at regions where the scanning magnetic field is non-zero) thereby reducing the current loss due to the zero field effect (ZFE). By reducing the current loss in regions having a magnetic field, the magnetic beam current is increased (e.g., the beam current is increased in regions where the magnetic field is non-zero) raising the overall beam current in a uniform manner over an entire scan path and thereby reducing the effect of the ZFE. In other words, the ZFE is removed by effectively minimizing it through an increase in the magnetized beam current.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Bo H. Vanderberg, Steven C. Hays, Andy Ray
  • Publication number: 20120237696
    Abstract: A fluid distribution member assembly for use in a substrate processing system includes a fluid distribution member having a central portion and a perimeter portion. The fluid distribution member defines at least one slot formed there-through and the at least one slot extends along a non-radial path configured to allow the central portion to expand and rotate with respect to the perimeter portion.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 20, 2012
    Applicant: AXCELIS TECHNOLOGIES, INC.
    Inventors: ARMIN HUSEINOVIC, IVAN L. BERRY
  • Patent number: 8268181
    Abstract: A plasma ashing apparatus for removing organic matter from a substrate including a low k dielectric, comprising a first gas source; a plasma generating component in fluid communication with the first gas source; a process chamber in fluid communication with the plasma generating component; an exhaust conduit in fluid communication with the process chamber; wherein the exhaust conduit comprises an inlet for a second gas source and an afterburner assembly coupled to the exhaust conduit, wherein the inlet is disposed intermediate to the process chamber and an afterburner assembly, and wherein the afterburner assembly comprises means for generating a plasma within the exhaust conduit with or without introduction of a gas from the second gas source; and an optical emission spectroscopy device coupled to the exhaust conduit comprising collection optics focused within a plasma discharge region of the afterburner assembly.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 18, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Aseem Kumar Srivastava, Palanikumaran Sakthivel, Thomas James Buckley
  • Patent number: 8270142
    Abstract: One embodiment of the present invention relates to a method for declamping a semiconductor wafer that is electrically adhered to a surface of an electrostatic chuck by a clamping voltage. In this method, the clamping voltage is deactivated. For a time following the deactivation, a first region of the wafer is lifted an first distance from the surface of the electrostatic chuck while a second region of the wafer remains adhered to the surface of the electrostatic chuck. A predetermined condition is monitored during the time. The second region is lifted from the surface of the electrostatic chuck when the predetermined condition is met.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 18, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: William D. Lee, Ashwin M. Purohit, Marvin R. LaFontaine, Richard J. Rzeszut
  • Patent number: 8242469
    Abstract: An apparatus is provided for reducing particle contamination in an ion implantation system. The apparatus has an enclosure having an entrance, an exit, and at least one louvered side having a plurality of louvers defined therein. A beamline of the ion implantation system passes through the entrance and exit, wherein the plurality of louvers of the at least one louvered side are configured to mechanically filter an edge of an ion beam traveling along the beamline. The enclosure can have two louvered sides and a louvered top, wherein respective widths of the entrance and exit of the enclosure, when measured perpendicular to the beamline, are generally defined by a position of the two louvered sides with respect to one another. One or more of the louvered sides can be adjustably mounted, wherein the width of one or more of the entrance and exit of the enclosure is controllable.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: August 14, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventor: Neil K. Colvin
  • Patent number: 8241425
    Abstract: The present invention is directed to an apparatus and method of forming a thermos layer surrounding a chuck for holding a wafer during ion implantation. The thermos layer is located below a clamping surface, and comprises a vacuum gap and an outer casing encapsulating the vacuum gap. The thermos layer provides a barrier blocking condensation to the outside of the chuck within a process chamber by substantially preventing heat transfer between the chuck when it is cooled and the warmer environment within the process chamber.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: August 14, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: William D. Lee, Ashwin M. Purohit, Marvin R. LaFontaine
  • Patent number: 8237135
    Abstract: An ion implantation method and system that incorporate beam neutralization to mitigate beam blowup, which can be particularly problematic in low-energy, high-current ion beams. The beam neutralization component can be located in the system where blowup is likely to occur. The neutralization component includes a varying energizing field generating component that generates plasma that neutralizes the ion beam and thereby mitigates beam blowup. The energizing field is generated with varying frequency and/or field strength in order to maintain the neutralizing plasma while mitigating the creation of plasma sheaths that reduce the effects of the neutralizing plasma.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: August 7, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Bo H. Vanderberg, William F. DiVergilio
  • Publication number: 20120187842
    Abstract: A method and apparatus is provided for generating a plasma electron flood using microwave radiation. In one embodiment, a microwave PEF apparatus is configured to generate a magnetic field that rapidly decays over a PEF cavity, resulting in a static magnetic field having a high magnetic field strength near one side (e.g., “bottom”) of the PEF cavity and a low magnetic field strength (e.g., substantially zero) near the opposite side (e.g., “top”) of the PEF comprising an elongated extraction slit. In one particular embodiment, the one or more permanent magnets are located at a position that is spatially opposed to the location of the elongated extraction slit to achieve the rapidly decaying magnetic field. The magnetic field results in an electron cyclotron frequency in a region of the cavity equal to or approximately equal to a microwave radiation frequency so that plasma is generated to diffuse through the extraction apertures.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventors: William F. DiVergilio, Bo Vanderberg
  • Publication number: 20120190181
    Abstract: Methods and carbon ion precursor compositions for implanting carbon ions generally includes vaporizing and ionizing a gas mixture including carbon oxide and methane gases in an ion source to create a plasma and produce carbon ions. The ionized carbon within the plasma is then extracted to form an ion beam. The ion beam is mass analyzed with a mass analyzer magnet to permit the ionized carbon to pass therethrough and implant into a workpiece.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: AXCELIS TECHNOLOGIES, INC.
    Inventors: WILLIAM D. LEE, DANIEL R. TIEGER, TSEH-JEN HSIEH
  • Patent number: 8227773
    Abstract: A glitch duration threshold is determined based on an allowable dose uniformity, a number of passes of a workpiece through an ion beam, a translation velocity, and a beam size. A beam dropout checking routine repeatedly measures beam current during implantation. A beam dropout counter is reset each time beam current is sufficient. On a first observation of beam dropout, a counter is incremented and a position of the workpiece is recorded. On each succeeding measurement, the counter is incremented if beam dropout continues, or reset if beam is sufficient. Thus, the counter indicates a length of each dropout in a unit associated with the measurement interval. The implant routine stops only when the counter exceeds the glitch duration threshold and a repair routine is performed, comprising recalculating the glitch duration threshold based on one fewer translations of the workpiece through the beam, and performing the implant routine starting at the stored position.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 24, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Patent number: 8226142
    Abstract: A workpiece gripping integrity device and method are provided having a charge-transfer sensing device configured to detect a change in charge associated with a gripper arm assembly based on a grip condition thereof. The charge-transfer sensing device can be configured to detect a change in capacitance between the gripper arm assembly and ground, wherein the change in capacitance is based on a grip condition of the gripper arm assembly associated with a plurality of grippers contacting the workpiece.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: July 24, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Joseph D. Gillespie, Sor Kham, Robert E. Wayne
  • Patent number: 8227768
    Abstract: An ion implantation system configured to produce an ion beam is provided, wherein an end station has a robotic architecture having at least four degrees of freedom. An end effector operatively coupled to the robotic architecture selectively grips and translates a workpiece through the ion beam. The robotic architecture has a plurality of motors operatively coupled to the end station, each having a rotational shaft. At least a portion of each rotational shaft generally resides within the end station, and each of the plurality of motors has a linkage assembly respectively associated therewith, wherein each linkage assembly respectively has a crank arm and a strut. The crank arm of each linkage assembly is fixedly coupled to the respective rotational shaft, and the strut of each linkage assembly is pivotally coupled to the respective crank arm at a first joint, and pivotally coupled to the end effector at a second joint.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Theodore Smick, Geoffrey Ryding, Ronald F. Horner, Paul Eide, Marvin Farley, Kan Ota
  • Patent number: 8228658
    Abstract: A method for clamping a workpiece involves placing the workpiece on a clamping surface of an electrostatic clamp. A clamping voltage is applied to the electrostatic clamp at a first frequency, therein providing a first clamping force between the workpiece and the electrostatic clamp. The application of clamping voltage at the first frequency is halted and another clamping voltage at a second frequency is applied to the electrostatic clamp, therein providing a second clamping force between the workpiece and the electrostatic clamp. The second frequency is greater than the first frequency, wherein the second clamping force is less than the first clamping force. The application of the clamping voltage at the second frequency is then halted, and the workpiece is removed from the electrostatic clamp. The clamping voltage can be controlled based on a set of performance criteria, such as a desired minimum clamping force and a maximum de-clamp time.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: July 24, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventor: Ashwin M. Purohit
  • Publication number: 20120161037
    Abstract: An ion implantation system for implanting ions into a workpiece is provided, having a process chamber and an energy source configured to produce a plasma of ions within the process chamber. A workpiece support having a support surface configured to position the workpiece within an interior region of the process chamber is configured to expose an implantation surface of the workpiece to the plasma of ions. A pulse generator is in electrical communication with the workpiece support, wherein the pulse generator is configured to apply an electrical pulse to the support, therein attracting ions to the implantation surface of the workpiece and implanting ions into the workpiece. A calorimeter is further associated with the workpiece support, wherein a controller is configured to monitor a signal from the calorimeter and to control the implantation of ions into the workpiece based, at least in part, on the signal from the calorimeter.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventor: Marvin Farley
  • Patent number: 8193513
    Abstract: A hybrid ion source, comprising a source body configured to create plasma therein, from a first material, wherein the first material comprises one of monatomic gases, small molecule gases, large molecule gases, reactive gases, and solids, a low power plasma generation component operably associated with the source body, a high power plasma generation component operably associated with the source body and an extraction aperture configured to extract ions of the ion plasma from the source body.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 5, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: William F. DiVergilio, Daniel R. Tieger, Michael A. Graf
  • Publication number: 20120119113
    Abstract: An ion implantation system for improving performance and extending lifetime of an ion source is disclosed. A fluorine-containing dopant gas source is introduced into the ion chamber along with one or more co-gases. The one or more co-gases can include hydrogen or krypton. The co-gases mitigate the effects caused by free fluorine ions in the ion source chamber which lead to ion source failure.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventors: Neil K. Colvin, Tseh-Jen Hsieh
  • Publication number: 20120118232
    Abstract: A system, apparatus and method for increasing ion source lifetime in an ion implanter are provided. Oxidation of the ion source and ion source chamber poisoning resulting from a carbon and oxygen-containing source gas is controlled by utilizing a hydrogen co-gas, which reacts with free oxygen atoms to form hydroxide and water.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventors: Neil K. Colvin, Tseh-Jen Hsieh
  • Patent number: 8168941
    Abstract: An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 1, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Marvin Farley, Donald Polner, Geoffrey Ryding, Theodore Smick, Takao Sakase, Ronald Horner, Edward Eisner, Paul Eide, Brian Freer, Mark Lambert, Donovan Beckel