Abstract: Elimination of mercury contained in a hydrocarbon feed by: a) feed 1 is mixed with a hydrogen stream 14 and a gaseous fraction 13 originating from c), b) mixture 1a contacted with a catalyst to convert mercury compounds to elemental mercury producing an effluent containing elemental mercury 6, c) effluent containing elemental mercury is cooled to between 20° C. and 80° C., then, at 1.5 MPa and 3.5 MPa and between 20° C. and 80° C., separation 10 of said effluent containing the elemental mercury into a gaseous fraction 11 and a liquid fraction 15, at least a part of said gaseous fraction 11 being recycled to step a), d) fractionation 20 of liquid fraction 15 to produce a gaseous phase 42 and a liquid phase 21, and e) contacting at least a part of gaseous phase 42 with a mercury collection material 43.
Abstract: The invention relates to a process for hydrotreatment and/or hydrocracking of nitrogen feedstocks in which a portion of the hydrotreated and/or hydrocracked effluent is recycled to the hydrotreatment and/or hydrocracking stage after having been subjected to stripping with hydrogen or any other inert gas. The invention is particularly well suited for the processes that are performed in the absence of gaseous hydrogen circulating through the catalytic bed.
Abstract: The invention concerns the use of a composition based on TiO2 as a catalyst for hydrolyzing COS and/or HCN in a gas mixture, said composition comprising at least 1% by weight of at least one sulphate of an alkaline-earth metal selected from calcium, barium, strontium and magnesium.
Abstract: The invention relates to a method for eliminating metal halides which are present in a liquid or gaseous, organic or non-organic effluent. According to the invention, the elimination is carried out by absorption of said metal halides on alumina agglomerates. The inventive method is characterised in that: the specific surface area of said agglomerates is between 50 and 350 m2/g, preferably between 70 and 300 m2/g and, better still, between 80 and 250 m2/g; and the V80? thereof is greater than or equal to 20 ml/100 g, preferably greater than or equal to 25 ml/100 g, better still greater than or equal to 30 ml/100 g and, optimally, greater than or equal to 35 ml/100 g.
Abstract: The invention provides alumina agglomerates of the type obtained by dehydrating an aluminum hydroxide or oxyhydroxide, agglomerating the alumina obtained, hydrothermally treating the agglomerates and calcining. The invention also provides a catalyst support, an adsorbent material and a catalyst constituted by said agglomerates. The invention also provides methods for preparing said agglomerates.
Abstract: The invention relates to alumina agglomerates of the type obtained by dehydrating an aluminium oxyhydroxide or hydroxide, agglomerating the alumina thus obtained, hydrothermally treating the agglomerates and calcinating same. Said agglomerates are characterised in that: the V37 ? thereof is greater than or equal to 75 ml/100 g, preferably greater than or equal to 80 ml/100 g and, better still, greater than or equal to 85 ml/100 g; the V0.1 ?m thereof is less than or equal to 31 ml/100 g; and the V0.2 ?m thereof is less than or equal to 20 ml/100 g, preferably less than or equal to 15 ml/100 g and, better still, less than or equal to 10 ml/100 g. The invention also relates to a catalyst carrier, an intrinsic catalyst or an absorbent, in particular for use in the petroleum and petrochemical industry, comprising such alumina agglomerates. Moreover, the invention relates to methods for preparing said agglomerates.
Abstract: A process for eliminating organic oxygen-containing molecules such as alcohols and organic present in an organic or gaseous effluent is characterized in that the elimination is carried out by adsorbing said organic oxygen-containing molecules onto alumina agglomerates.
Abstract: This invention teaches an improved ebullated-bed reactor hydrotreating/hydrocracking process for treating heavy vacuum gas oil (HVGO) and deasphalted oil (DAO) feeds. The reactor is designed to operate at minimum catalyst bed expansion so as to maximize reactor kinetics and approach plug flow reactor process performance. Further, the invention allows for the production of a uniform product quality and production output that does not substantially vary with time.