Abstract: An audio apparatus and a camera including the audio apparatus. The audio apparatus includes an audio transducer electronically connectable to a camera unit, and an audio transducer holder being mechanically connectable to the camera unit and having an audio transducer container being configured to receive the audio transducer and being provided with a spring element allowing the audio transducer to be pushed into the audio transducer container in a first direction and resiliently forcing the audio transducer outward relative to the audio transducer container such that, when the audio apparatus is installed in the camera and the camera is in an assembled state including the removable cover, the audio transducer is forced into abutment against an inside of the removable cover of the camera.
Abstract: A method for updating a fixed pattern noise matrix comprises: calculating a first difference between a target and first different images in a video stream to obtain a first differential matrix; calculating a second difference between the target and second different images in the video stream to obtain a second differential matrix; identifying a set of candidate positions for fixed pattern noise by: locating first and second sets of positions in the first differential matrix at which a difference deviates from predetermined values, finding a set of overlapping positions between the first and second sets of positions, and adjusting the set of overlapping positions. The adjusted set of overlapping positions is used for fixed pattern noise. Furthermore, each position in the set of candidate positions is updated, wherein the updated fixed pattern noise value at each position is based on a value at a corresponding non-adjusted position in the differential matrix.
Abstract: A method of highlighting an object of interest comprises providing a digital image, determining a region of interest in the digital image covering an object of interest in the digital image having a person identifier, masking all image data in the digital image in a surrounding area to the region of interest, within the detected region of interest, determining a region of exclusion covering an object of exclusion in the digital image having another person identifier, and forming an output image comprising image data from the digital image of the region of interest, wherein the region of exclusion thereof is masked, and comprising the masked image data of the surrounding area. A device for performing the method is also disclosed. The method may be performed on an image sequence, for example in the form of a surveillance video.
Abstract: A method, a computer program product, an encoder and a monitoring device for encoding an audio signal with variable bitrate, wherein: an audio signal comprising a plurality of successive audio frames is received; and for each successive audio frame of the audio signal: the audio frame is represented in a frequency domain with respect to a plurality of frequency sub-bands; the audio frame is classified in each frequency sub-band as either background or foreground using a background model specific to the frequency sub-band; each successive audio frame of the audio signal is encoded, wherein a number of bits is allocated for each frequency sub-band of the audio frame, wherein the number of bits allocated for a frequency sub-band is higher if the audio frame is classified as foreground in the frequency sub-band than if the audio frame is classified as background in the frequency sub-band.
Type:
Application
Filed:
April 30, 2020
Publication date:
December 10, 2020
Applicant:
Axis AB
Inventors:
Mersad Jelacic, Marcus Tedenvall, Markus Gerard, Xing Danielsson Fan, Ricard Wanderlöf
Abstract: A video processing comprises a video image processing pipeline and an encoder. The video image processing pipeline is processes images of captured video data and comprises: an image stream forming function which generates a first and second image streams each comprising a plurality of image frames, and an image stabilization function for image stabilizing the first image stream, thereby forming a stabilized image stream. The image stream forming function bypasses the second image stream from the image stabilization function, thereby forming an original image stream. The encoder encodes the stabilized image stream and the original image stream as a joint encoded image stream comprising encoded frames based on images frames from both the stabilized \the original image streams, wherein the joint encoded image stream comprises intra and inter frames, and wherein the intra frames are exclusively encoded based on image frames of the original image stream.
Abstract: The present teachings relate to the field of video encoding. In particular, the present teachings relate to a method, device, and system for encoding a sequence of frames wherein a motion level of image data of an initial frame in the sequence of frames is determined to be below a motion level threshold. The encoding method described herein may reduce the bit rate for the encoded sequence of frames, while avoiding that the encoded video stream looks unnatural or frozen when decoded and displayed.
Abstract: There is provided a method and devices for encoding and streaming a video sequence over a plurality of network connections. A video sequence is encoded (S04) in parallel into a number of encoded video sequences having different video properties. The encoded video sequences are then streamed (S06) in parallel over the plurality of network connections. Each encoded video sequence is streamed over at least one of the plurality of network connections, and, for each network connection, an encoded video sequence having video properties that match desired video properties of the network connection. In response to detecting (S08) that the desired video properties of one of the network connections have changed, the number of encoded video sequences is increased or decreased (S10).
Abstract: A method of controlling output bitrate of a video encoder encoding a video sequence comprises: setting an allowable average bitrate, gathering encoding data by encoding video during a first time period and for each of a plurality of time intervals, storing a respective output bitratet, and a quantisation parameter used for encoding during the respective time interval. For each time interval, the output bitrate is normalised by calculating a corresponding normalised bitrate estimated for a predetermined nominal quantisation parameter as a function of the output bitrate and the quantisation parameter. An average normalised bitrate is calculated by averaging the normalised bitrates of the plurality of time intervals. A new quantisation parameter is calculated based on a comparison of the average normalised bitrate and the allowable average bitrate. The video sequence is encoded using the new quantisation parameter during a second time period subsequent to the first time period.
Type:
Application
Filed:
April 30, 2020
Publication date:
November 26, 2020
Applicant:
Axis AB
Inventors:
Xing Danielsson Fan, Viktor Edpalm, Alexander Toresson
Abstract: A lightguide arrangement for guiding light from several separate LEDs arranged on a PCB to the front of a device comprises a lightguide plate and mounting insert. The lightguide plate is a plate formed in one piece and comprising multiple lightguiding portions A, B, and C, wherein each lightguiding portion has an input portion for receiving light from a light source 108 and an output portion for outcoupling of said light. Adjacent lightguiding portions are interconnected by bridge portions formed by cutouts in the lightguide plate. The lightguide arrangement is characterized in that the mounting insert has ribs protruding from a lower surface thereof and matingly fitting with the cutouts in the lightguide plate to localize the lightguide plate and to restrict propagation of light through the cutouts, and in that the mounting insert comprises attachment means for attaching it to an underlying structure.
Abstract: A method and a video encoding system for encoding a video stream include video data representing sequentially related image frames, wherein the image frames include a predefined first subarea and a predefined second subarea. The method comprises defining a first bitrate budget, defining a second bitrate budget, encoding the video stream including applying the first bitrate budget to video data of the first subarea and applying the second bitrate budget to video data of the second subarea. The video encoding system comprises an image processor for processing the image stream, a memory including values defining a first bitrate budget and a second bitrate budget, respectively, and a first subarea and a second subarea of the image frames of the image stream and an encoder arranged to encode the image stream, the encoding including applying the first bitrate budget to video data of the first subarea and applying the second bitrate budget to video data of the second subarea.
Abstract: A mount for an image capturing device comprising a fixed frame, and a support frame arranged to support an image capturing device. The support frame is attached to the frame by a pivot joint defining a pivot axis for the support frame relative to the fixed frame, and an adjustment joint for adjusting a pivot position for the support frame comprising a first element forming a first contact surface, and a second element forming a second contact surface. The first element is arranged to be moved along a linear axis that traverses the pivot axis and that extends trough a plane of the contact surfaces. At least one of the contact surfaces is curved. The first and second elements are arranged to be magnetically connected during abutment. A system and method for adjustment are also disclosed.
Type:
Application
Filed:
May 15, 2020
Publication date:
November 19, 2020
Applicant:
Axis AB
Inventors:
Christoffer Arvidsson, David Fagerkvist
Abstract: A method for encoding, using a block-based video encoding algorithm, a distorted image frame produced via at least one image sensor, comprising: determining a map of maximum pixel block sizes corresponding to the distorted image frame, wherein the map of maximum pixel block sizes is determined based on a spatial resolution distribution corresponding to a distribution of extents of the corresponding FOV, such that for a first portion of the distorted image frame having a first spatial resolution, the maximum pixel block size corresponding to the first portion is set to a first value, and for a second portion of the distorted image frame having a second spatial resolution being lower than the first spatial resolution, the maximum pixel block size corresponding to the second portion is set to a second value being lower than the first value; and encoding, using the block-based video encoding algorithm, the distorted image frame.
Abstract: A method and system for tracking objects in a defined area compares image data of a detected object to profiles of persons that have entered the defined area to find the best match and connect the profile of the best match to the detected object. Identification profiles of persons that have been identified, by presenting their credentials, when entering the defined area are registered as candidates and are later matched with objects detected in the defined area. The system and method use the physical access control system of the defined area to reduce the number of candidates for the detected objects to the most likely candidates. The processing time and need for resources of the object tracking in the defined area are thereby reduced.