Patents Assigned to Bridge Semiconductor Corporation
  • Publication number: 20140048319
    Abstract: A wiring board with built-in metal slugs includes a dielectric hybrid core and build-up circuitries. The metal slugs extend into apertures of a stiffener of the hybrid core and are electrically connected to the build-up circuitry. The build-up circuitry covers the metal slugs and the stiffener and provides signal routing. The metal slugs can serve as power and ground planes for the wiring board.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 20, 2014
    Applicant: Bridge Semiconductor Corporation
    Inventors: Wei-Kuang PAN, Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048944
    Abstract: The present invention relates to an interconnect substrate with an embedded device, a built-in stopper and dual build-up circuitries and a method of making the same. In accordance with one preferred embodiment of the present invention, the method includes: forming a stopper on a dielectric layer; mounting a semiconductor device on the dielectric layer using the stopper as a placement guide for the semiconductor device; attaching a stiffener to the dielectric layer; forming a first build-up circuitry and a second build-up circuitry that cover the semiconductor device, the stopper and the stiffener at both sides; and providing a plated through-hole that provides an electrical connection between the first and second build-up circuitries. Accordingly, the stopper can accurately confine the placement location of the semiconductor device and avoid the electrical connection failure between the semiconductor device and the build-up circuitry.
    Type: Application
    Filed: January 10, 2013
    Publication date: February 20, 2014
    Applicant: BRIDGE SEMICONDUCTOR CORPORATION
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048916
    Abstract: In a preferred embodiment, a wiring board with embedded device and electromagnetic shielding includes a semiconductor device, a core layer, a shielding lid, shielding slots and build-up circuitry. The build-up circuitry covers the semiconductor device and the core layer. The shielding slots and the shielding lid are electrically connected to at least one ground contact pad of the semiconductor device by the build-up circuitry and can respectively serve as effective horizontal and vertical electromagnetic shields for the semiconductor devices.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 20, 2014
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048950
    Abstract: The present invention relates to a thermally enhanced semiconductor assembly and a method of making the same. In accordance with one preferred embodiment, the method includes: forming a stopper on a metal layer; mounting a semiconductor device on the metal layer using the stopper as a placement guide for the semiconductor device; attaching a stiffener to the metal layer; forming a build-up circuitry that covers the stopper, the semiconductor device and the stiffener; providing a plated through-hole that provides an electrical connection between the build-up circuitry and the metal layer; and removing selected portions of the metal layer to form a thermal pad and a terminal. Accordingly, the thermal pad can provide excellent heat spreading, and the stopper can accurately confine the placement location of the semiconductor device and avoid the electrical connection failure between the semiconductor device and the build-up circuitry.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 20, 2014
    Applicant: BRIDGE SEMICONDUCTOR CORPORATION
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048914
    Abstract: In a preferred embodiment, a wiring board with embedded device and electromagnetic shielding includes a shielding frame, a semiconductor device, a stiffener, a first build-up circuitry and a second build-up circuitry with a shielding lid. The first and second build-up circuitries cover the semiconductor device, the shielding frame and the stiffener in the opposite vertical directions. The shielding frame and the shielding lid are electrically connected to at least one ground contact pad of the semiconductor device by the first build-up circuitry and can respectively serve as effective horizontal and vertical electromagnetic shields for the semiconductor devices within the aperture of the stiffener.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 20, 2014
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048955
    Abstract: In a preferred embodiment, a semiconductor assembly board with back-to-back embedded devices and built-in stoppers includes an intermediate layer, a first stopper, a first semiconductor device, a first core layer, a second stopper, a second semiconductor device, a second core layer, a first build-up circuitry, a second build-up circuitry and a plated through hole. The first and second semiconductor devices are mounted on opposite surfaces of the intermediate layer using the first and second stoppers as placement guides that are laterally aligned with peripheral edges of the first and second semiconductor devices. The first and second core layers laterally cover the first and second semiconductor devices. The first and second build-up circuitries cover the semiconductor devices and the core layers in the opposite vertical directions and provide signal routing for the first and second semiconductor devices.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048313
    Abstract: A thermally enhanced wiring board with thermal pad and electrical post includes a metal slug, a metal pillar, a patterned interconnect substrate, an adhesive, a build-up circuitry and optionally a plated through hole. The metal slug and the metal pillar extend into apertures of the patterned interconnect substrate and are electrically connected to the build-up circuitry. The build-up circuitry covers the metal slug, the metal pillar and the patterned interconnect substrate and can provide signal routing. The metal slug can provide thermal contact surface, and the metal pillar can serve as power/ground plane or signal vertical transduction pathway.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 20, 2014
    Applicant: Bridge Semiconductor Corporation
    Inventors: Wei-Kuang PAN, Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20140048326
    Abstract: A multi-cavity wiring board includes a coreless substrate, an adhesive, and a stiffener having a plurality of apertures with lateral shielding sidewalls. The coreless substrate covers the stiffener and includes electrical pads exposed from the apertures of the stiffener as electrical contacts for semiconductor devices packaged within the apertures. The aperture sidewalls of the stiffener can serve as effective lateral electromagnetic shields for the semiconductor devices within the apertures.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 20, 2014
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Patent number: 8614502
    Abstract: A semiconductor assembly board includes a supporting board, a coreless build-up circuitry and a built-in electronic device. The supporting board includes a bump, a flange and a via hole in the bump. The built-in electronic device extends into the via hole and is electrically connected to the build-up circuitry. The build-up circuitry extends from the flange and the built-in electronic device and provides signal routing for the built-in electronic device. The supporting board provides mechanical support, ground/power plane and heat sink for the coreless build-up circuitry.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 24, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W.C. Lin, Chia-Chung Wang
  • Publication number: 20130320481
    Abstract: A method of manufacturing a thermal sensor array comprises: (a) providing a first wafer comprising an integrated circuit; (b) providing a second wafer comprising a carrier substrate, a thermally sensitive layer, a first electrode and a second electrode; (c) applying a polymer to a bonding surface of at least one of the first wafer and the second wafer; (d) contacting the first wafer and the second wafer for a period of time and at a temperature and pressure sufficient to create a bond; (e) removing the carrier substrate; and (f) patterning and etching the thermally sensitive layer, the first electrode and the second electrode to create an array of pixels, wherein the first wafer and the second wafer are bonded without the need for fine alignment of the wafers.
    Type: Application
    Filed: May 22, 2013
    Publication date: December 5, 2013
    Applicant: Bridge Semiconductor Corporation
    Inventors: Howard Beratan, S.S.N. Bharadwaja, Robert J. Morris,, Jr.
  • Publication number: 20130292826
    Abstract: The present invention relates to a method of making a semiconductor assembly. In accordance with a preferred embodiment, the method includes: preparing a dielectric layer and a supporting board including a stiffener, a bump/flange sacrificial carrier and an adhesive, wherein the adhesive bonds the stiffener to the sacrificial carrier and the dielectric layer covers the supporting board; then removing the bump and a portion of the flange to form a cavity and expose the dielectric layer; then mounting a semiconductor device into the cavity; and then forming a build-up circuitry that includes a first conductive via in direct contact with the semiconductor device and provides signal routing for the semiconductor device. Accordingly, the direct electrical connection between the semiconductor device and the build-up circuitry is advantageous to high I/O and high performance, and the stiffener can provide adequate mechanical support for the build-up circuitry and the semiconductor device.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 7, 2013
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Publication number: 20130277832
    Abstract: The present invention relates to a method of making a cavity substrate. In accordance with a preferred embodiment, the method includes: preparing a supporting board including a stiffener, a bump/flange sacrificial carrier and an adhesive, wherein the adhesive bonds the stiffener to the sacrificial carrier; forming a coreless build-up circuitry on the supporting board in contact with the bump and the stiffener; and removing the bump and a portion of the flange to form a cavity and expose a conductive via of the coreless build-up circuitry from a closed end of the cavity, wherein the cavity is laterally covered and surrounded by the adhesive. A semiconductor device can be mounted on the cavity substrate and electrically connected to the conductive via. The coreless build-up circuitry provides signal routing for the semiconductor device while the stiffener can provide adequate mechanical support for the coreless build-up circuitry and the semiconductor device.
    Type: Application
    Filed: January 10, 2013
    Publication date: October 24, 2013
    Applicant: Bridge Semiconductor Corporation
    Inventors: Charles W.C. LIN, Chia-Chung WANG
  • Patent number: 8535985
    Abstract: A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting an adhesive on the ledge including inserting the bump into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the bump with an aperture in the conductive layer, then flowing the adhesive between the bump and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, then mounting a semiconductor device on the bump opposite a cavity in the bump, wherein a heat spreader includes the bump and a base that includes a portion of the ledge adjacent to the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
    Type: Grant
    Filed: March 20, 2011
    Date of Patent: September 17, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8531024
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace, a substrate and an adhesive. The heat spreader includes a post and a base. The conductive trace includes a pad, a terminal, a conductive pattern and first and second vias. The substrate includes the conductive pattern and a dielectric layer. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive and an aperture in the substrate, and the base extends laterally from the post. The conductive trace provides signal routing between the pad and the terminal using the conductive pattern and the vias.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 10, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8525214
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace, an adhesive and a support layer. The heat spreader includes a post, a base, an underlayer and a thermal via. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, the base extends laterally from the post, the support layer is sandwiched between the base and the underlayer and the thermal via extends from the base through the support layer to the underlayer. The conductive trace provides signal routing between the pad and the terminal.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: September 3, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang, Ming Yu Shih
  • Patent number: 8415703
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post, a base and a flange. The conductive trace includes a pad and a terminal. The semiconductor device extends into a cavity in the flange, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, the flange extends upwardly from the post in the opening and extends laterally above the adhesive, the cavity extends into the opening and the base extends laterally from the post. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
    Type: Grant
    Filed: September 4, 2010
    Date of Patent: April 9, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang, Sangwhoo Lim
  • Patent number: 8378372
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a substrate and an adhesive. The semiconductor device is electrically connected to the substrate and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly through an opening in the adhesive into an aperture in the substrate, and the base extends laterally from the post. The adhesive extends between the post and the substrate and between the base and the substrate. The substrate includes first and second conductive layers and a dielectric layer therebetween and provides horizontal signal routing between a pad and a terminal at the first conductive layer.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: February 19, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Chia-Chung Wang, Charles W. C. Lin
  • Patent number: 8354688
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and dual adhesives. The heat spreader includes a bump, a base and a ledge. The conductive trace includes a pad and a terminal. The semiconductor device is mounted on the bump in a cavity in the bump, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The bump extends into an opening in the first adhesive and is aligned with and spaced from an opening in the second adhesive. The base and the ledge extend laterally from the bump. The first adhesive is sandwiched between the base and the ledge, the second adhesive is sandwiched between the conductive trace and the ledge and the ledge is sandwiched between the adhesives. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
    Type: Grant
    Filed: December 24, 2011
    Date of Patent: January 15, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8354283
    Abstract: A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting a first adhesive on the ledge including inserting the bump into an opening in the first adhesive, mounting a conductive layer on the first adhesive including aligning the bump with an aperture in the conductive layer, then flowing the first adhesive between the bump and the conductive layer, solidifying the first adhesive, then providing a heat spreader that includes the bump, a base and the ledge, then mounting a second adhesive on the ledge, mounting a conductive trace that includes a pad and a terminal on the second adhesive, then mounting a semiconductor device on the bump in a cavity in the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: January 15, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8343808
    Abstract: A method of making a stackable semiconductor assembly that includes a semiconductor device, a heat spreader, an adhesive, a terminal, a plated through-hole and build-up circuitry is disclosed. The heat spreader includes a bump, a base and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the build-up circuitry and thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The build-up circuitry provides signal routing for the semiconductor device. The plated through-hole provides signal routing between the build-up circuitry and the terminal. The heat spreader provides heat dissipation for the semiconductor device.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang