Abstract: According to an example embodiment, a total offered traffic load for a shared resource within a network switching system may be determined, the total offered traffic load may include, for example, a sum of offered traffic loads from one or more active virtual output queues (VOQs) of the network switching system. A capacity of the shared resource within the network switching system may be determined. A transmission rate from one or more of the active VOQs over the shared resource may be adjusted such that the total traffic load from the active VOQs does not exceed the capacity of the shared resource.
Abstract: Methods and systems for a transmitter LOFT cancellation scheme that maintains IQ balance are disclosed. Aspects of one method may include providing current compensation to both differential inputs of a mixer for each of I and Q channels. An initial current compensation of X units may be provided, followed by subsequent compensation as needed. The initial compensation may be provided to each differential input of the mixers used for I and Q channels. The subsequent current compensation for the I channel may be independent of the subsequent current compensation for the Q channel. Subsequent current compensation to a first differential input for a mixer may be increased by Y units while decreasing current compensation to the second differential input of the mixer by Y units. In this manner, the DC common mode level for the mixer may remain the same at the initial DC compensation current of X units for both mixers.
Abstract: A system and method for the secure storage of executable code and the secure movement of such code from memory to a processor. The method includes the storage of an encrypted version of the code. The code is then decrypted and decompressed as necessary, before re-encryption in storage. The re-encrypted executable code is then written to external memory. As a cache line of executable code is required, a fetch is performed but intercepted. In the interception, the cache line is decrypted. The plain text cache line is then stored in an instruction cache associated with a processor.
Abstract: An LED driver circuit is disclosed that can drive a plurality of LED strings that are arranged in parallel, each LED string having a plurality of component LEDs that are series-connected. The LED strings can be the same type of LEDs in each string, or have different types of LEDs from one string to another. The LED driver includes a voltage control loop that dynamically regulates the output voltage across the parallel arrangement of LED strings. The output voltage is dynamically adjusted to accommodate the LED string with the largest operational voltage drop. This enables LED displays to constructed using different types of LEDs strings, but still supply the LED strings in a power efficient manner. Further, each LED string also includes its own individual current regulation loop so that the current, and therefore brightness, of each LED string can be individually adjusted.
Type:
Grant
Filed:
April 24, 2007
Date of Patent:
June 8, 2010
Assignee:
Broadcom Corporation
Inventors:
Sridhar V. Kotikalapoodi, James Zeng, Tivadar Szabo, Manisha P. Pandyn, Farzan Roohparvar
Abstract: A network device for processing packets. The network device includes a memory management unit for storing packets and performing resource checks on each packet and an egress module for performing packet modification and transmitting the packet to a destination port. The memory management unit includes a timer for indicating that a free space should be created on a bus slot between the memory management unit and the egress module, wherein the free space is used for transmitting CPU instructions from the memory management unit to the egress module.
Type:
Grant
Filed:
March 28, 2005
Date of Patent:
June 8, 2010
Assignee:
Broadcom Corporation
Inventors:
Anupam Anand, Chien-Hsien Wu, Samir K. Sanghani
Abstract: A system for implementing an orthogonal frequency division multiplexing scheme and providing an improved range extension. The system includes a transmitter for transmitting data to a receiver. The transmitter includes a symbol mapper for generating a symbol for each of a plurality of subcarriers and a spreading module for spreading out the symbol on each of the plurality of subcarriers by using a direct sequence spread spectrum. The symbol on each of the plurality of subcarriers is spread by multiplying the symbol by predefined length sequences. The receiver includes a de-spreader module for de-spreading the symbols on each of the plurality of subcarriers. The de-spreader module includes a simply correlator receiver for obtaining maximum detection. The correlator produces an output sequence of a same length as an input sequence and the de-spreader module uses a point of maximum correlation on the output sequence to obtain a recovered symbol.
Abstract: A radio frequency (RF) transmitter front-end includes a digital to analog conversion module and a power amplifier module. The digital to analog conversion module is coupled to convert amplitude information into analog amplitude adjust signals when a first mode is active and is coupled to convert power level information into analog power level signals when a second mode is active. The power amplifier module is coupled to amplify first phase modulated RF signals in accordance with the analog amplitude adjust signals to produce first outbound RF signals when the first mode is active and is coupled to amplify second phase modulated RF signals in accordance with the analog power level signals to produce second outbound RF signals when the second mode is active.
Type:
Grant
Filed:
December 13, 2006
Date of Patent:
June 8, 2010
Assignee:
Broadcom Corporation
Inventors:
Mohammad Nariman, Alireza Zolfaghari, Hooman Darabi
Abstract: A universal serial bus device includes a wireless millimeter wave transceiver that communicates first data with a host device via a first RF millimeter wave communication path. A USB interface, when coupled to a host device, communicates second data with the host device.
Abstract: A frequency-locked clock generator includes a voltage-controlled oscillator (VCO), a frequency-to-current converter, a reference current source and a gain stage. The VCO generates an output signal. The frequency-to-current converter generates a converter current proportional to a frequency of the output signal. The reference current source generates a reference current. The gain stage generates a control signal based on a difference between the converter current and the reference current. The control signal is applied to the VCO to adjust the frequency of the output signal. Feedback forces the VCO to generate an output clock signal such that the corresponding current it produces (i.e., the converter current) is equal to the reference current. When in lock, the frequency of the output signal is determined by a time constant (or equivalent time constant) of the frequency-locked clock generator.
Abstract: A transceiver includes an RF receiver section having a plurality of RF receiver stages configured in parallel, and a configurable RF transmitter section. The plurality of RF receiver stages are selectively enabled in response to a control signal. The configurable RF transmitter section is configured to operate in one of: a mixed signal mode of operation and a phase modulation mode of operation, in response to the control signal.
Abstract: A configuration controller generates one or more control signals based on channel data. A receiver includes an RF receiver section and a receiver processing module that are configured in response to the control signal. A transmitter includes an RF transmitter section and a transmitter processing module that are configured in response to the control signal.
Abstract: A communication device includes a wireless telephony transceiver for communicating first data with a wireless telephony network. One or more interface devices generate user data based on an action of a user. A processing module generates second data, based on the user data and based on first remote control configuration data corresponding to a first external device. A millimeter wave transceiver communicates the second data with the first external device via a millimeter wave communication path.
Abstract: A configurable transceiver includes an RF receiver section that generates at least one downconverted signal from a received RF signal. A receiver processing module processes at least one downconverted signal in a plurality of receiver stages to produce a stream of inbound data, wherein the receiver processing module is configurable in response to a control signal to selectively bypass at least one of the plurality of receiver processing stages. A transmitter processing module processes outbound data in a plurality of transmitter stages to produce at least one baseband signal, wherein the receiver processing module is configurable in response to the control signal to selectively bypass at least one of the plurality of transmitter processing stages. An RF transmitter section generates at least one RF signal from the at least one baseband signal.
Abstract: A communication device includes a wireless telephony transceiver for communicating first data with a wireless telephony network. A millimeter wave transceiver communicates second data with a vehicle via a millimeter wave communication path. A processing module executes a plurality of applications including a wireless telephony application that is based on the communication of the first data, and a vehicle interface application that is based on the second data.
Abstract: A mobile communication device includes a processing module that executes a video application and that generates display data in response thereto. At least one transceiver sends the display data to a display device in a video mode of operation and transceives wireless telephony data with a wireless telephony network in a telephony mode of operation.
Abstract: A configurable transceiver includes an RF receiver that generates a stream of inbound data from at least one received RF signal, wherein the RF receiver is configurable in response to a control signal. An RF transmitter generates at least one RF signal from a stream of outbound data, wherein the RF transmitter section is configurable in response to the control signal. A configuration controller generates the control signal based on channel data. A power management unit generates at least one receiver supply signal and at least on transmitter supply signal in accordance with a plurality of power consumption parameters, and wherein the power management unit adjusts at least one of the plurality of power consumption parameters based on the control signal.
Abstract: Probe data is directly communicating between a probe device and a component of an external device via a wireless millimeter wave communication path. A probe application is executed in accordance with the probe data, for diagnostics and testing, to update component software, and to upload other files and applications to the component.
Abstract: Data packets transmitted over a wireless network are suppressed by hardware at the transmitting end and expanded on the receiving end. This conserves bandwidth as well as reduces the processing resource requirements in both the subscriber station and the base station. An extended header element is added to a data packet that is to be transmitted over the wireless network. The extended header element contains an index that is used along with an identifier to access a rule. The rule is used to determine which bytes are to be suppressed at the transmitter and expanded at the receiver.
Type:
Application
Filed:
January 29, 2010
Publication date:
June 3, 2010
Applicant:
Broadcom Corporation
Inventors:
John D. HORTON, JR., Robert J. Lee, David M. Pullen
Abstract: An apparatus and method is disclosed to compensate for one or more offsets in a communications signal. A communications receiver may carry out an offset adjustment algorithm to compensate for the one or more offsets. An initial search procedure determines one or more signal metric maps for one or more selected offset adjustment corrections from the one or more offset adjustment corrections. The offset adjustment algorithm determines one or more optimal points for one or more selected offset adjustment correction based upon the one or more signal maps. The adaptive offset algorithm adjusts each of the one or more selected offset adjustment corrections to their respective optimal points and/or each of one or more non-selected offset adjustment corrections to a corresponding one of a plurality of possible offset corrections to provide one or more adjusted offset adjustment corrections. A tracking mode procedure optimizes the one or more adjusted offset adjustment corrections.
Abstract: An RF front-end includes a receiver frequency band filter module, a low noise amplifier, a first power amplifier module, a second power amplifier module, and a transmit frequency band filter module. The receiver frequency band filter module filters a received RF signal and the low noise amplifier amplifies the signal in accordance with the first or the second RF front-end configuration signal. The first power amplifier module is enabled in accordance with the first RF front-end configuration signal to amplify the first outbound RF signal and the second power amplifier module is enabled in accordance with the second RF front-end configuration signal to amplify the second outbound RF signal. The transmitter frequency band filter module is enabled in accordance with the second RF front-end configuration signal to filter the second transmit RF signal.