Abstract: A communication device includes an RF transceiver for communicating first data with at least one of a plurality of remote communication devices via a first protocol and a first frequency band. A millimeter wave transceiver communicates second data with at least one of the plurality of remote communication devices via a second protocol and a second frequency band. A communication control module coordinates the communication of the first data and the second data with the at least one of the plurality of remote communication devices and for establishing a mesh network between the communication device and the plurality of remote communication devices.
Abstract: Provided is a method and system for controlling current characteristics in a transceiver having a transmitter. The transmitter includes a plurality of current cells. Each cell is configurable for operating in different modes. The method includes determining a first probability associated with transmitting data at a particular symbolic level and determining a second probability associated with each cell being used during a transmission at the particular symbolic level. Next, one of the modes for each cell is selected in accordance with anticipated performance requirements. An average current of the transmitter is then calculated based upon the determined first and second probabilities and the selected modes.
Type:
Application
Filed:
August 5, 2009
Publication date:
April 1, 2010
Applicant:
Broadcom Corporation
Inventors:
Yee Ling CHEUNG, Kevin T. Chan, Jan Mulder
Abstract: A communication device includes an RF transceiver for communicating first data with a remote communication device via a first protocol. A millimeter wave transceiver communicates second data with the remote communication device via a second protocol. A communication control module coordinates the communication of the first data and the second data with the remote communication device to establish at least one parameter of the second protocol.
Abstract: Systems and methods that may program a non-volatile memory for use in configuring features of a device, such as a set top box, for example, are disclosed. One method may include the steps of beginning a programming cycle; programming mode control bits of the non-volatile memory that correspond to configurations of features of the device; if an interruption occurs during the programming cycle, then rendering the non-volatile memory invalid; and if no interruption occurs during the programming cycle, then rendering the non-volatile memory operational.
Abstract: A cable modem method, system, and computer program product are provided for payload header suppression in which a limited number of suppression indices is used to map suppression rules to data streams. Network resources are conserved by implementing precise classification algorithms to correctly identify incoming packets at the cable modem as belonging to a particular data stream, which ensures that a minimum number of suppression indices are utilized. Additionally, network resources are conserved by utilizing sophisticated algorithms for reusing suppression indices when new data streams are detected by the cable modem. One such reuse algorithm involves recycling the suppression index that has been least recently used in transmitting a packet with a suppressed payload header.
Type:
Grant
Filed:
July 11, 2002
Date of Patent:
March 30, 2010
Assignee:
Broadcom Corporation
Inventors:
Anthony P Saladino, Rennie L Gardner, Michael R Robinson, Ajay Chandra V Gummalla
Abstract: A transceiver for a RFID reader and a transceiver for a RFID transponder (tag) allow communication between the two devices. The RFID reader utilizes an analog front end and a digital backend. In the receiver portion of the transceiver, the front end of the RFID reader uses a pair of down-conversion mixers to demodulate a received signal into in-phase (I) and quadrature (Q) components and analog-to-digital converters (ADC) digitize the signal. A digital signal processor (DSP) in the back end processes the digital signal and uses a matched filter for data detection. The RFID tag receives an inductively coupled signal from the reader and the receiver portion of the tag uses a pulse/level detector that employs an analog comparator and a sample and hold circuit to detect the received signal. A digital decoder/controller is used to decode the incoming data and to establish a sampling clock for the pulse/level detector.
Abstract: A system and method for providing connectivity between mobile devices and access points of a network without redundant solicitation of communication by the mobile device at each access point is described. The method involves receiving a data packet at a first access point in a control group; transmitting the data packet from the first access point to the mobile device; determining if the mobile device acknowledges receipt of the data packet; responsive to determining that the mobile device failed to acknowledge receipt of the data packet, forwarding the data packet to a second access point; and transmitting the data packet from the second access point to the mobile device.
Abstract: Methods, systems, and apparatuses for calibration of analog to digital converters (ADC) are described herein. In an aspect, an ADC includes a plurality of slices. Each slice includes a digital to analog converter (DAC), a comparator, and a digital processing unit (DPU). The digital processing unit is electrically connected to the comparator and the DAC. In another aspect, an analog-to-digital converter includes an input module and an analog to digital converter core configured to receive an analog input from the input module and generate a digital output. The ADC is configured to adjust a precision of the analog to digital converter core based on a quality of the analog input signal.
Abstract: Methods and systems for video format transformation in a mobile terminal having a video display may include converting interleaved YUV 4:2:2 color space video data to YUV 4:2:0 color space video data as the interleaved YUV 4:2:2 color space video data is received. The conversion may use Y, U, and V components in the interleaved YUV 4:2:2 color space video data for a horizontal line of video data. The conversion may also use only a Y component in the interleaved YUV 4:2:2 color space video data for a previous horizontal line or a successive horizontal line of video data. The converted 4:2:0 color space video data may be transferred to memory via, for example, direct memory access. The YUV 4:2:0 color space video data may be transferred to the memory as, for example, 32-bit words.
Abstract: Separation of luma and chroma in a video. In an embodiment, values on a current line of the sampled video signal, at ¼-period intervals, are compared with values on a previous line of the sampled video signal, at ¼-period intervals. Values on the current line of the sampled video signal are compared to values on a subsequent line of the sampled video signal. This gives information about the vertical frequency content. Values on the current line are compared with values having the same chroma phase on the same line to provide information about horizontal frequency content. The data of vertical and horizontal frequency logic are used by the decision logic to determine the appropriateness of combing based on these comparisons. If combing is not appropriate, the signal is bandpass filtered instead of combed. The low-pass and combing filters are applied to the original signal, not an interpolated or resampled signal.
Abstract: A system for reducing the bandwidth required to wirelessly transmit a packet via a wireless network is provided. In an embodiment, the system includes a transmitting node configured to generate a packet to be transmitted via the wireless network, to select a suppression rule from a table of suppression rules based on the type of the packet to be transmitted, to apply the suppression rule to the packet to generate a suppressed packet, wherein the transmitter node applies the suppression rule by suppressing at least a portion of the header of the packet and by adding a descriptor associated with the header suppression rule to the packet, and to transmit the suppressed packet via the wireless network.
Abstract: An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator.
Type:
Grant
Filed:
January 3, 2008
Date of Patent:
March 30, 2010
Assignee:
Broadcom Corporation
Inventors:
Agnes N. Woo, Kenneth R. Kindsfater, Fang Lu
Abstract: A method for in-place, lightweight Ack packet promotion in a wireless network environment is provided. The method includes receiving a new Ack packet via a wireless network; searching through a transmit queue for an old Ack packet that corresponds to the new Ack packet; and replacing the data in a number field, a checksum field, a window size field, and a timestamp options field of the old Ack packet with data in a number field, a checksum field, a window size field, and a timestamp options field of the new Ack packet.
Type:
Grant
Filed:
August 17, 2007
Date of Patent:
March 30, 2010
Assignee:
Broadcom Corporation
Inventors:
David Pullen, Rick Pitchford, Dannie Gay, John Horton
Abstract: A packet-based, hierarchical communication system, arranged in a spanning tree configuration, is described in which wired and wireless communication networks exhibiting substantially different characteristics are employed in an overall scheme to link portable or mobile computing devices. The network accommodates real time voice transmission both through dedicated, scheduled bandwidth and through a packet-based routing within the confines and constraints of a data network. Conversion and call processing circuitry is also disclosed which enables access devices and personal computers to adapt voice information between analog voice stream and digital voice packet formats as proves necessary. Routing pathways include wireless spanning tree networks, wide area networks, telephone switching networks, internet, etc., in a manner virtually transparent to the user.
Abstract: An integrated circuit (IC) includes a baseband processing module, a GPS receiver, an RF section, and an interface module. The GPS receiver module is coupled to recover a plurality of coarse/acquisition (C/A) signals and a plurality of navigation messages from a plurality of down converted GPS signals. The RF section is coupled to convert an inbound RF voice signal into the inbound voice symbol stream; convert the outbound voice symbol stream into an outbound RF voice signal; convert an inbound RF data signal into the inbound data symbol stream; convert the outbound data symbol stream into an outbound RF data signal; and convert a plurality of GPS RF signals into the plurality of down converted GPS signals.
Abstract: Methods and systems for processing Ethernet data are disclosed and may comprise receiving packetized data by an Ethernet switch integrated within a single gigabit Ethernet IP phone chip. A first portion of the received packetized data may be switched within the single gigabit Ethernet IP phone chip, between a first on-chip port that routes data internally for processing within the single gigabit Ethernet IP phone chip and a second on-chip port that routes data externally for off-chip processing. The packetized data may be received by a 10/100Base Ethernet physical interface transceiver (PHY) integrated within the single gigabit Ethernet IP phone chip. The packetized data may be received by a gigabit Ethernet PHY. The received packetized data may be communicated from the gigabit Ethernet PHY to the Ethernet switch integrated within the single gigabit Ethernet IP phone chip for switching.
Abstract: A fuse corner pad is part of an integrated circuit that includes a built-in fuse contact and a plurality of auxiliary pads. The fuse contact is a conductive metallic or metalloid structure that is connected to a fuse element. The fuse contact and fuse element are used inside of the fuse corner pad for programmability (e.g., for security) and/or adjustment (e.g., trimming) of analog and/or digital signals. The fuse contact and fuse element are not required to be bonded to an external electrical connection (such as, a pin or ball). The auxiliary pads provide a variety of functional or non-functional applications, such as testing, probing, programming, and/or circuit adjustment.
Type:
Grant
Filed:
April 11, 2007
Date of Patent:
March 30, 2010
Assignee:
Broadcom Corporation
Inventors:
Art Pharn, James Seymour, Jennifer Chiao
Abstract: Data packets transmitted over a wireless network are suppressed by hardware at the transmitting end and expanded on the receiving end. This conserves bandwidth as well as reduces the processing resource requirements in both the subscriber station and the base station. An extended header element is added to a data packet that is to be transmitted over the wireless network. The extended header element contains an index that is used along with an identifier to access a rule. The rule is used to determine which bytes are to be suppressed at the transmitter and expanded at the receiver.
Type:
Grant
Filed:
March 21, 2007
Date of Patent:
March 30, 2010
Assignee:
Broadcom Corporation
Inventors:
John D. Horton, Jr., Robert J. Lee, David M. Pullen
Abstract: Methods and systems for dynamically tuning and calibrating an antenna using antenna hopping are disclosed. Aspects of one method may include dynamically tuning a mobile terminal antenna, to antenna hop to a plurality of different center frequencies to receive RF signals. The antenna hopping may be slow antenna hopping (SAH) or fast antenna hopping (FAH). In FAH, received signals for a channel at each of the center frequencies may be aggregated. A hopping rate in FAH may be greater than twice a highest baseband signal frequency of a desired channel. In SAH, the mobile terminal antenna may hop to determined center frequencies with adequate signals for the desired channel. Signal adequacy of the desired channel at a center frequency may be made by, for example, measuring received signal strength for the desired channel and/or a bit error rate for the desired channel.
Abstract: In a wireless communication system, a method and system for implementing an FO function in a KASUMI algorithm for accelerating cryptography in GSM/GPRS/EDGE compliant handsets are provided. An efficient implementation of the FO function may comprise circuitry provided for a pipeline state machine, an FI function, a controller, a pipe register, and an XOR operation. Signals may be generated to control each round of FI processing and to indicate when each round is complete. The pipeline state machine may provide data input and subkey to the FI function for processing. A first and a second round FI processing outputs may be transferred to the pipe register. The second round output may be clocked from the pipe register to generate a portion of the FO function output and may also be XORed with a third round output of FI processing to generate the remaining portion of the FO function output.